Detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors

Abstract

A photonic sensor based on inversed opal molecular imprinted polymer (MIP) film to detect the presence of chlorantraniliprole (CHL) residue in tomatoes was developed. Acrylic acid was polymerized in the presence of CHL inside the structure of a colloidal crystal, followed by etching of the colloids and CHL elution. Colloidal crystals and MIP films were characterized by scanning electron microscopy and FT-IR, confirming the inner structure and chemical structure of the material. MIP films supported on polymethylmethacrylate (PMMA) slides were incubated in aqueous solutions of the pesticide and in blended tomato samples. The MIP sensor displayed shifts of the peak wavelength of the reflection spectra in the visible range when incubated in CHL concentrations between 0.5 and 10 μg L−1, while almost no peak displacement was observed for non-imprinted (NIP) films. Whole tomatoes were blended into a liquid and spiked with CHL; the sensor was able to detect CHL residues down to 0.5 μg kg−1, significantly below the tolerance level established by the US Environmental Protection Agency of 1.4 mg kg−1. Stable values were reached after about 30-min incubation in test samples. Control samples (unspiked processed tomatoes) produced peak shifts both in MIP and NIP films; however, this matrix effect did not affect the detection of CHL in the spiked samples. These promising results support the application of photonic MIP sensors as an economical and field-deployable screening tool for the detection of CHL in crops.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Vijayasree V, Bai H, Beevi SN, Mathew TB, Kumar V, George T, Xavier G (2013) Persistence and effects of processing on reduction of chlorantraniliprole residues on cowpea fruits. Bull Environ Contam Toxicol 90(4):494–498

    CAS  Article  Google Scholar 

  2. 2.

    O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99(15):6709–6724

    Article  Google Scholar 

  3. 3.

    USDA (2015) Pesticide data program, annual summary. Agricultural Department, United States

    Google Scholar 

  4. 4.

    Chiappini A, Pasquardini L, Bossi AM (2020) Molecular imprinted polymers coupled to photonic structures in biosensors: the state of art. Sensors 20(18):5069. https://doi.org/10.3390/s20185069

    CAS  Article  Google Scholar 

  5. 5.

    Usman L, Adnan M, Muhammad Z, Ghulam M, Akhtar H (2020) Nanostructured molecularly imprinted photonic polymers for sensing applications. Curr Nanosci 16(4):495–503. https://doi.org/10.2174/1573413715666190206144415

    CAS  Article  Google Scholar 

  6. 6.

    Ashley J, Shahbazi M-A, Kant K, Chidambara VA, Wolff A, Bang DD, Sun Y (2017) Molecularly imprinted polymers for sample preparation and biosensing in food analysis: progress and perspectives. Biosens Bioelectron 91:606–615. https://doi.org/10.1016/j.bios.2017.01.018

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Yan X, Li H, Su X (2018) Review of optical sensors for pesticides. TrAC Trends Anal Chem 103:1–20. https://doi.org/10.1016/j.trac.2018.03.004

    CAS  Article  Google Scholar 

  8. 8.

    Chiappini A, Tran LTN, Trejo-García PM, Zur L, Lukowiak A, Ferrari M, Righini GC (2020) Photonic crystal stimuli-responsive chromatic sensors: a short review. Micromachines 11(3):290. https://doi.org/10.3390/mi11030290

    Article  PubMed Central  Google Scholar 

  9. 9.

    Fathi F, Rashidi M-R, Pakchin PS, Ahmadi-Kandjani S, Nikniazi A (2021) Photonic crystal based biosensors: emerging inverse opals for biomarker detection. Talanta 221:121615. https://doi.org/10.1016/j.talanta.2020.121615

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Lin Z-z, Li L, G-y F, Z-z L, A-h P, Z-y H (2020) Molecularly imprinted polymer-based photonic crystal sensor array for the discrimination of sulfonamides. Anal Chim Acta 1101:32–40. https://doi.org/10.1016/j.aca.2019.12.032

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Han S, Jin Y, Su L, Chu H, Zhang W (2020) A two-dimensional molecularly imprinted photonic crystal sensor for highly efficient tetracycline detection. Anal Methods 12(10):1374–1379. https://doi.org/10.1039/D0AY00110D

    CAS  Article  Google Scholar 

  12. 12.

    Wang X, Mu Z, Liu R, Pu Y, Yin L (2013) Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food Chem 141(4):3947–3953. https://doi.org/10.1016/j.foodchem.2013.06.024

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Farooq S, Nie J, Cheng Y, Yan Z, Bacha SAS, Zhang J, Nahiyoon RA, Hussain Q (2019) Synthesis of core-shell magnetic molecularly imprinted polymer for the selective determination of imidacloprid in apple samples. J Sep Sci 42(14):2455–2465. https://doi.org/10.1002/jssc.201900221

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Kumar N, Narayanan N, Gupta S (2018) Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant and honey. Food Chem 255:81–88. https://doi.org/10.1016/j.foodchem.2018.02.061

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Wu Z, C-a T, Lin C, Shen D, Li G (2008) Label-free colorimetric detection of trace atrazine in aqueous solution by using molecularly imprinted photonic polymers. Chem Eur J 14(36):11358–11368. https://doi.org/10.1002/chem.200801250

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Yang JC, Park JY (2016) Polymeric colloidal nanostructures fabricated via highly controlled convective assembly and their use for molecular imprinting. ACS Appl Mater Interfaces 8(11):7381–7389. https://doi.org/10.1021/acsami.6b00375

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Aya GA, Yang JC, Hong SW, Park JY (2019) Replicated pattern formation and recognition properties of 2,4-dichlorophenoxyacetic acid-imprinted polymers using colloidal silica Array molds. Polymers 11(8):1332

    Article  Google Scholar 

  18. 18.

    Zhang X, Cui Y, Bai J, Sun Z, Ning B, Li S, Wang J, Peng Y, Gao Z (2017) Novel biomimic crystalline colloidal array for fast detection of trace parathion. ACS Sensors 2(7):1013–1019. https://doi.org/10.1021/acssensors.7b00281

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Walker JP, Kimble KW, Asher SA (2007) Photonic crystal sensor for organophosphate nerve agents utilizing the organophosphorus hydrolase enzyme. Anal Bioanal Chem 389(7):2115–2124. https://doi.org/10.1007/s00216-007-1599-y

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11(8):2132–2140. https://doi.org/10.1021/cm990080+

    CAS  Article  Google Scholar 

  21. 21.

    Kadhem A, Xiang S, Nagel S, Lin C-H, Fidalgo de Cortalezzi M (2018) Photonic molecularly imprinted polymer film for the detection of testosterone in aqueous samples. Polymers 10(4):349

    Article  Google Scholar 

  22. 22.

    Dai J, Vu D, Nagel S, Lin C-H, Fidalgo de Cortalezzi M (2017) Colloidal crystal templated molecular imprinted polymer for the detection of 2-butoxyethanol in water contaminated by hydraulic fracturing. Microchim Acta 185(1):32. https://doi.org/10.1007/s00604-017-2590-8

    CAS  Article  Google Scholar 

  23. 23.

    Dai J, Dong X, Fidalgo de Cortalezzi M (2017) Molecularly imprinted polymers labeled with amino-functionalized carbon dots for fluorescent determination of 2,4-dinitrotoluene. Microchim Acta 184(5):1369–1377. https://doi.org/10.1007/s00604-017-2123-5

    CAS  Article  Google Scholar 

  24. 24.

    Griffete N, Frederich H, Maître A, Ravaine S, Chehimi MM, Mangeney C (2012) Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Langmuir 28(1):1005–1012. https://doi.org/10.1021/la202840y

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Wang L-Q, Lin F-Y, Yu L-P (2012) A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 137(15):3502–3509. https://doi.org/10.1039/C2AN35460H

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

E. Rossi would like to acknowledge CONICET for his fellowship.

Funding

The authors are grateful to the Instituto Tecnológico de Buenos Aires (ITBA) and the University of Missouri College of Engineering for financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Maria M. Fidalgo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 3782 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rossi, E., Salahshoor, Z., Ho, KV. et al. Detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors. Microchim Acta 188, 70 (2021). https://doi.org/10.1007/s00604-021-04731-2

Download citation

Keywords

  • Molecularly imprinted polymer
  • Photonic sensor
  • Colloidal crystal
  • Pesticide detection
  • Chlorantraniliprole