Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin

Abstract

A glassy carbon electrode (GCE) was modified with magnetic molecularly imprinted polymers (mMIPs) using catechin as a template, reduced graphene oxide (rGO), and zeolitic imidazolate frameworks-8 (ZIF-8) for the sensitive detection of catechin (mMIPs/rGO-ZIF-8/GCE). The prepared rGO, ZIF-8, and mMIPs exhibited typical structures and properties determined by various characterizations. The mMIPs showed good selectivity for catechin among several structural analogs. The mMIPs/rGO-ZIF-8/GCE showed a higher maximum peak current for catechin than that of a single component modified GCE. After the optimization of the material ratio, coating amounts, pH, and scan rate, the mMIPs/rGO-ZIF-8/GCE exhibited good selectivity, good linearity, and a low detection limit (LOD) for catechin. The linear range was 0.01 nmol/L–10 μmol/L and the LOD was 0.003 nmol/L (S/N = 3). The relative standard deviations for reproducibility and stability tests (n = 6) were 5.2% and 6.1%, respectively. A recovery between 99.1 and 101.3% was obtained in the detection of catechin in spiked samples. Based on these findings, the proposed mMIPs/rGO-ZIF-8/GCE could be developed further, and future research could be conducted on alternate fabrication strategies and methods to create more portable and practical electrochemical sensors.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. 1.

    Manasa G, Mascarenhas RJ, Satpati AK, D’Souza OJ, Dhason A (2017) Facile preparation of poly(methylene blue) modified carbon paste electrode for the detection and quantification of catechin. Mater Sci Eng C 73:552–561. https://doi.org/10.1016/j.msec.2016.12.114

    CAS  Article  Google Scholar 

  2. 2.

    Amiot MJ, Riva C, Vinet A (2016) Effects of dietary polyphenols on metabolic syndrome features in humans: a systematic review. Obes Rev 17(7):573–586. https://doi.org/10.1111/obr.12409

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Umemura K, Ishibashi Y, Ito M, Homma Y (2019) Quantitative detection of the disappearance of the antioxidant ability of catechin by near-infrared absorption and near-infrared photoluminescence spectra of single-walled carbon nanotubes. ACS Omega 4(4):7750–7758. https://doi.org/10.1021/acsomega.9b00767

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Huang CC, Chen W (2018) A SERS method with attomolar sensitivity: a case study with the flavonoid catechin. Microchim Acta 185(2):120. https://doi.org/10.1007/s00604-017-2662-9

    CAS  Article  Google Scholar 

  5. 5.

    Wang L, Feng X, Ren L, Piao Q, Zhong J, Wang Y, Li H, Chen Y, Wang B (2015) Flexible solid-state supercapacitor based on a metal–organic framework interwoven by electrochemically-deposited PANI. J Am Chem Soc 137(15):4920–4923. https://doi.org/10.1021/jacs.5b01613

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Liu W, Yin XB (2016) Metal–organic frameworks for electrochemical applications. Trends Anal Chem 75:86–96. https://doi.org/10.1016/j.trac.2015.07.011

    CAS  Article  Google Scholar 

  7. 7.

    Kazemi E, Bagheri H, Norouzian D (2019) A turn-on graphene quantum dot and graphene oxide based fluorometric aptasensor for the determination of telomerase activity. Microchim Acta 186(12):785. https://doi.org/10.1007/s00604-019-3956-x

    CAS  Article  Google Scholar 

  8. 8.

    Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D (2017) Carbon-based composite materials for supercapacitor electrodes: a review. J Mater Chem A 5(25):12653–12672. https://doi.org/10.1039/c7ta00863e

    CAS  Article  Google Scholar 

  9. 9.

    Baig N, Saleh TA (2018) Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications. Microchim Acta 185(6):283. https://doi.org/10.1007/s00604-018-2809-3

    CAS  Article  Google Scholar 

  10. 10.

    Sant’Anna MVS, Carvalho SWMM, Gevaerd A, Silva JOS, Santos E, Carregosa ISC, Wisniewski A, Marcolino-Junior LH, Bergamini MF, Sussuchi EM (2020) Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta 220:121334. https://doi.org/10.1016/j.talanta.2020.121334

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Shin MJ, Shin JS (2019) A molecularly imprinted polymer undergoing a color change depending on the concentration of bisphenol A. Microchim Acta 187(1):44. https://doi.org/10.1007/s00604-019-4050-0

    CAS  Article  Google Scholar 

  12. 12.

    Zhang RR, Zhan J, Xu JJ, Chai JY, Zhang ZM, Sun AL, Chen J, Shi XZ (2020) Application of a novel electrochemiluminescence sensor based on magnetic glassy carbon electrode modified with molecularly imprinted polymers for sensitive monitoring of bisphenol A in seawater and fish samples. Sensors Actuators B Chem 317:128237. https://doi.org/10.1016/j.snb.2020.128237

    CAS  Article  Google Scholar 

  13. 13.

    Liu Y, Huang Y, Xiao A, Qiu H, Liu L (2019) Preparation of magnetic Fe3O4/MIL-88A nanocomposite and its adsorption properties for bromophenol blue dye in aqueous solution. Nanomaterials 9(1). https://doi.org/10.3390/nano9010051

  14. 14.

    Yang Y, Yan W, Guo C, Zhang J, Yu L, Zhang G, Wang X, Fang G, Sun D (2020) Magnetic molecularly imprinted electrochemical sensors: a review. Anal Chim Acta 1106:1–21. https://doi.org/10.1016/j.aca.2020.01.044

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lu S, Hummel M, Chen K, Zhou Y, Kang S, Gu Z (2020) Synthesis of Au@ZIF-8 nanocomposites for enhanced electrochemical detection of dopamine. Electrochem Commun 114:106715. https://doi.org/10.1016/j.elecom.2020.106715

    CAS  Article  Google Scholar 

  16. 16.

    Lu YC, Guo MH, Mao JH, Xiong XH, Liu YJ, Li Y (2019) Preparation of core-shell magnetic molecularly imprinted polymer nanoparticle for the rapid and selective enrichment of trace diuron from complicated matrices. Ecotoxicol Environ Saf 177:66–76. https://doi.org/10.1016/j.ecoenv.2019.03.117

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Tang J, Zheng SB, Jiang SX, Li J, Guo T, Guo JH (2020) Metal organic framework (ZIF-67)-derived Co nanoparticles/N-doped carbon nanotubes composites for electrochemical detecting of tert-butyl hydroquinone. Rare Metals. https://doi.org/10.1007/s12598-020-01536-9

  18. 18.

    Zhu L, Hao C, Wang X, Guo Y (2020) Fluffy cotton-like GO/Zn–Co–Ni layered double hydroxides form from a sacrificed template GO/ZIF-8 for high performance asymmetric supercapacitors. ACS Sustain Chem Eng 8(31):11618–11629. https://doi.org/10.1021/acssuschemeng.0c02916

    CAS  Article  Google Scholar 

  19. 19.

    Nunes da Silva D, Leijoto de Oliveira H, Borges KB, Pereira AC (2020) Sensitive determination of 17β-estradiol using a magneto sensor based on magnetic molecularly imprinted polymer. Electroanalysis. https://doi.org/10.1002/elan.202060223

  20. 20.

    Yuan MM, Zou J, Huang ZN, Peng DM, Yu JG (2020) PtNPs-GNPs-MWCNTs-β-CD nanocomposite modified glassy carbon electrode for sensitive electrochemical detection of folic acid. Anal Bioanal Chem 412(11):2551–2564. https://doi.org/10.1007/s00216-020-02488-w

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zhang Z, Chen S, Ren J, Han F, Yu X, Tang F, Xue F, Chen W, Yang J, Jiang Y, Jiang H, Lv B, Xu J, Dai J (2020) Facile construction of a molecularly imprinted polymer–based electrochemical sensor for the detection of milk amyloid A. Microchim Acta 187(12):642. https://doi.org/10.1007/s00604-020-04619-7

    CAS  Article  Google Scholar 

  22. 22.

    Wang C, Zhao Q (2020) A reagentless electrochemical sensor for aflatoxin B1 with sensitive signal-on responses using aptamer with methylene blue label at specific internal thymine. Biosens Bioelectron 167:112478. https://doi.org/10.1016/j.bios.2020.112478

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Yang LJ, Tang C, Xiong HY, Zhang XH, Wang SF (2009) Electrochemical properties of catechin at a single-walled carbon nanotubes–cetylramethylammonium bromide modified electrode. Bioelectrochemistry 75(2):158–162. https://doi.org/10.1016/j.bioelechem.2009.03.009

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Moccelini SK, Fernandes SC, de Camargo TP, Neves A, Vieira IC (2009) Self-assembled monolayer of nickel(II) complex and thiol on gold electrode for the determination of catechin. Talanta 78(3):1063–1068. https://doi.org/10.1016/j.talanta.2009.01.038

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Devadas B, Chen SM (2015) Controlled electrochemical synthesis of yttrium (III) hexacyanoferrate micro flowers and their composite with multiwalled carbon nanotubes, and its application for sensing catechin in tea samples. J Solid State Electrochem 19(4):1103–1112. https://doi.org/10.1007/s10008-014-2715-5

    CAS  Article  Google Scholar 

  26. 26.

    Şenocak A, Basova T, Demirbas E, Durmuş M (2019) Direct and fast electrochemical determination of catechin in tea extracts using SWCNT-subphthalocyanine hybrid material. Electroanalysis 31(9):1697–1707. https://doi.org/10.1002/elan.201900214

    CAS  Article  Google Scholar 

  27. 27.

    Ezhil Vilian AT, Madhu R, Chen SM, Veeramani V, Sivakumar M, Huh YS, Han YK (2015) Facile synthesis of MnO2/carbon nanotubes decorated with a nanocomposite of Pt nanoparticles as a new platform for the electrochemical detection of catechin in red wine and green tea samples. J Mater Chem B 3(30):6285–6292. https://doi.org/10.1039/C5TB00508F

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Chatterjee TN, Das D, Roy RB, Tudu B, Sabhapondit S, Tamuly P, Pramanik P, Bandyopadhyay R (2018) Molecular imprinted polymer based electrode for sensing catechin (+C) in green tea. IEEE Sensors J 18(6):2236–2244. https://doi.org/10.1109/JSEN.2018.2791661

    CAS  Article  Google Scholar 

  29. 29.

    Pang J, Wu X, Li A, Liu X, Li M (2017) Detection of catechin in Chinese green teas at N-doped carbon-modified electrode. Ionics 23(7):1889–1895. https://doi.org/10.1007/s11581-017-2006-0

    CAS  Article  Google Scholar 

  30. 30.

    Yao Y, Zhang L, Wen Y, Wang Z, Zhang H, Hu D, Xu J, Duan X (2015) Voltammetric determination of catechin using single-walled carbon nanotubes/poly(hydroxymethylated-3,4-ethylenedioxythiophene) composite modified electrode. Ionics 21(10):2927–2936. https://doi.org/10.1007/s11581-015-1494-z

    CAS  Article  Google Scholar 

  31. 31.

    Jarosz-Wilkołazka A, Ruzgas T, Gorton L (2004) Use of laccase-modified electrode for amperometric detection of plant flavonoids. Enzym Microb Technol 35(2):238–241. https://doi.org/10.1016/j.enzmictec.2004.04.016

    CAS  Article  Google Scholar 

  32. 32.

    Masoum S, Behpour M, Azimi F, Motaghedifard MH (2014) Potentiality of chemometric approaches for the determination of (+)-catechin in green tea leaves at the surface of multiwalled carbon nanotube paste electrode. Sensors Actuators B Chem 193:582–591. https://doi.org/10.1016/j.snb.2013.12.022

    CAS  Article  Google Scholar 

  33. 33.

    Wu J, Wang H, Fu L, Chen Z, Jiang J, Shen G, Yu R (2005) Detection of catechin based on its electrochemical autoxidation. Talanta 65(2):511–517. https://doi.org/10.1016/j.talanta.2004.07.045

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    El-Hady DA (2007) Selective and sensitive hydroxypropyl-beta-cyclodextrin based sensor for simple monitoring of (+)-catechin in some commercial drinks and biological fluids. Anal Chim Acta 593(2):178–187. https://doi.org/10.1016/j.aca.2007.05.002

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Wang XG, Li J, Fan YJ (2010) Fast detection of catechin in tea beverage using a poly-aspartic acid film based sensor. Microchim Acta 169(1):173–179. https://doi.org/10.1007/s00604-010-0335-z

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the Central Public-interest Scientific Institution Basal Research Fund (No. 1610242020005), Open project of key laboratory of biology and processing for bast fiber crops, MARA, and National Agricultural Science and Technology Innovation Project (Characteristic fruit and vegetable innovation team, ASTIP-IBFC05).

Author information

Affiliations

Authors

Contributions

Data curation, formal analysis, and investigation: Yafen Fu and Zongyi You. Conceptualization and methodology: Aiping Xiao and Liangliang Liu. Writing—original draft preparation: Yafen Fu, Zongyi You, and Liangliang Liu. Writing—review and editing: Liangliang Liu. Funding acquisition: Aiping Xiao.

Corresponding author

Correspondence to Liangliang Liu.

Ethics declarations

Consent to participate

Informed consent was obtained from all individual participants involved in the study.

Conflict of interest

The authors declare no competing interests.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 13741 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., You, Z., Xiao, A. et al. Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin. Microchim Acta 188, 71 (2021). https://doi.org/10.1007/s00604-021-04724-1

Download citation

Keywords

  • Catechin
  • Electrochemical detection
  • Magnetic nanoparticles
  • Molecularly imprinted polymer
  • Reduced graphene oxide
  • Zeolitic imidazolate frameworks