Praseodymium selective fluorescence recognition based on GdPO4: Tb3+ probe via energy transfer from Tb3+ to Pr3+ ions

Abstract

A novel strategy is proposed based on the efficient energy transfer from Tb3+ to Pr3+ for the sensitive and selective discrimination of praseodymium ions due to the matched energy levels of 5D4 (Tb3+) and 3P0 (Pr3+). The electron of Tb3+ transfers from the ground state to the excited state under the excitation of ultraviolet light and relaxes to the 5D4 level. In the presence of Pr3+ the electron has no time to return to the ground state, thus it transfers to the 3P0 level of Pr3+ resulting in the quenching of Tb3+ luminescence. In the case of GdPO4: Tb3+ nanowire, its fluorescence intensity at 545 nm linearly decreased when Pr3+ concentration ranged from 1 × 10−7 to 1 × 10−5 M, and the detection limit was 75 nM. To further investigate the sensing mechanism, CePO4: Tb3+, YPO4: Tb3+, and YBO3: Tb3+ nanoparticles were also synthesized for Pr3+ ion detection. For all materials, similar fluorescence quenching by Pr3+ ions occurred, which confirmed the efficient energy transfer from Tb3+ to Pr3+ ions.

Graphical abstract

Utilizing the matched energy levels of 5D4 (Tb3+) and 3P0 (Pr3+), for the first time, we proposed a novel strategy (taking GdPO4: Tb3+ probe as the example) based on the efficient energy transfer from Tb3+ to Pr3+ for the sensitive and selective discrimination of praseodymium ions.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Barros A, Deloncle R, Deschamp J, Boutinaud P, Chadeyron G, Mahiou R, Cavalli E, Brik M (2014) Optical properties and electronic band structure of BiMg2PO6, BiMg2VO6, BiMg2VO6: Pr3+ and BiMg2VO6: Eu3+. Opt Mater 36:1724–1729

    CAS  Article  Google Scholar 

  2. 2.

    Yin SH, Wu WY, Zhang FY, Zheng Q, Bian X (2013) In selective separation of praseodymium (III) by di-(2-ethylhexyl) phosphoric acid using the complexing agent. Advanced Materials Research, Trans Tech Publ 610-613:452–456

    Article  CAS  Google Scholar 

  3. 3.

    Ganjali M, Hosseini M, Ghafarloo A, Khoobi M, Faridbod F, Shafiee A, Norouzi P (2013) Selective recognition of Pr3+ based on fluorescence enhancement sensor. Mater Sci Eng C 33:4140–4143

    CAS  Article  Google Scholar 

  4. 4.

    Dashtian K, Zare-Dorabei R (2017) Preparation and characterization of a novel optical chemical sensor for determination of trace amounts of praseodymium ion by UV/Vis spectrophotometry. Sensor Actuat B-chem 242:586–594

    CAS  Article  Google Scholar 

  5. 5.

    Pourjavid MR, Rezaee M, Hosseini MH, Razavi T (2012) Monitoring of praseodymium (III) ions in aqueous solutions, soil and sediment samples by a PVC membrane sensor based on a furan-triazole derivative. Quim Nova 35:1973–1980

    CAS  Article  Google Scholar 

  6. 6.

    Sastri, V. R.; Perumareddi, J.; Rao, V. R.; Rayudu, G.; Bünzli, J.-C (2003) Modern aspects of rare earths and their complexes. Elsevier

  7. 7.

    Ganjali MR, Norouzi P, Mirnaghi FS, Riahi S, Faridbod F (2007) Lanthanide recognition: monitoring of praseodymium(III) by a novel praseodymium(III) microsensor based on N’-(Pyridin-2-Ylmethylene) benzohydrazide. IEEE Sensors J 7:1138–1144

    CAS  Article  Google Scholar 

  8. 8.

    Wang N, Ren X, Si Z, Jiang W, Liu C, Liu X (2000) Derivative spectrophotometric determination of praseodymium in rare earth mixtures with lomefloxacin. Talanta. 51:595–598

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Bhagavathy V, Rao TP, Damodaran A (1993) Flotation-spectrophotometric determination of praseodymium with 5, 7-dichloroquinolin-8-ol and Rhodamine 6G. Anal Chim Acta 280:169–172

    CAS  Article  Google Scholar 

  10. 10.

    Sun S, Wu X, Yang J, Li L, Wang Y (2004) Determination of dysprosium by resonance light scattering technique in the presence of BPMPHD. Spectrochim Acta A 60:261–264

    Article  CAS  Google Scholar 

  11. 11.

    Gupta VK, Goyal RN, Pal MK, Sharma RA (2009) Comparative studies of praseodymium (III) selective sensors based on newly synthesized Schiff’s bases. Anal Chim Acta 653:161–166

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Sutariya PG, Soni H, Gandhi SA (2020) Single step synthesis of novel hybrid fluorescence probe for selective recognition of Pr (III) and As (III) from soil samples. J Mol Struct 1200:127053

    CAS  Article  Google Scholar 

  13. 13.

    Luo Y, Zhu C, Du D, Lin Y (2019) A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 1061:1–12

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Tan M, Del Rosal B, Zhang Y, Rodríguez EM, Hu J, Zhou Z, Fan R, Ortgies DH, Fernández N, Chaves-Coira I (2018) Rare-earth-doped fluoride nanoparticles with engineered long luminescence lifetime for time-gated in vivo optical imaging in the second biological window. Nanoscale. 10:17771–17780

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Labrador-Páez L, Ximendes EC, Rodríguez-Sevilla P, Ortgies DH, Rocha U, Jacinto C, Rodríguez EM, Haro-González P, Jaque D (2018) Core–shell rare-earth-doped nanostructures in biomedicine. Nanoscale. 10:12935–12956

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Pu Y, Leng J, Wang D, Wang J, Foster NR, Chen J (2018) Recent progress in the green synthesis of rare-earth doped upconversion nanophosphors for optical bioimaging from cells to animals. Chinese J Chem Eng 26:2206–2218

    CAS  Article  Google Scholar 

  17. 17.

    Liu Y, Tu D, Zhu H, Chen X (2013) Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem Soc Rev 42:6924–6958

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Liu Y, Tu D, Zhu H, Ma E, Chen X (2013) Lanthanide-doped luminescent nano-bioprobes: from fundamentals to biodetection. Nanoscale. 5:1369–1384

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Zeng H-H, Zhou Z-Y, Liu F, Deng J, Huang S-Y, Li G-P, Lai P-Q, Xie Y-P, Xiao W (2019) Design and synthesis of a vanadate-based ratiometric fluorescent probe for sequential recognition of Cu2+ ions and biothiols. Analyst. 144:7368–7377

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Zeng H-H, Wu H, Peng D, Liu F, Shi W-G, Qiu J-D (2018) Fast and selective detection of Cr(III) in environmental water samples using phosphovanadate Y (V0.2P0.8O4): Eu3+ fluorescence nanorods. ACS sensors 3:1569–1575

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Di W, Li J, Shirahata N, Sakka Y, Willinger M-G, Pinna N (2011) Photoluminescence, cytotoxicity and in vitro imaging of hexagonal terbium phosphate nanoparticles doped with europium. Nanoscale. 3:1263–1269

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Runowski M, Shyichuk A, Tymiński A, Grzyb T, Lavín V c, Lis S (2018) Multifunctional optical sensors for nanomanometry and nanothermometry: high-pressure and high-temperature upconversion luminescence of lanthanide-doped phosphates-LaPO4/YPO4: Yb3+, Tm3+. ACS Appl Mater Interfaces 10:17269–17279

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Zeng H-H, Liu F, Peng Z-Q, Yu K, Rong L-Q, Wang Y, Wu P, Liang R-P, Qiu J-D (2020) Lanthanide phosphate nanoparticle-based one-step optical discrimination of alkaline phosphatase activity. ACS Appl Nano Mater 3:2336–2345

    CAS  Article  Google Scholar 

  24. 24.

    Xu A-Z, Zhang L, Zeng H-H, Liang R-P, Qiu J-D (2018) Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO4: Tb nanorods. Microchim Acta 185:288

    Article  CAS  Google Scholar 

  25. 25.

    Zhang L, Yin M, You H, Yang M, Song Y, Huang Y (2011) Mutifuntional GdPO4: Eu3+ hollow spheres: synthesis and magnetic and luminescent properties. Inorg Chem 50:10608–10613

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Tymiński A, Grzyb T (2017) Are rare earth phosphates suitable as hosts for upconversion luminescence? Studies on nanocrystalline REPO4 (RE= Y, La, Gd, Lu) doped with Yb3+ and Eu3+, Tb3+, Ho3+, Er3+ or Tm3+ ions. J Lumin 181:411–420

    Article  CAS  Google Scholar 

  27. 27.

    Shalapska T, Dorenbos P, Gektin A, Stryganyuk G, Voloshinovskii A (2014) Luminescence spectroscopy and energy level location of lanthanide ions doped in La (PO3)3. J Lumin 155:95–100

    CAS  Article  Google Scholar 

  28. 28.

    Zeng H-H, Zhang L, Rong L-Q, Liang R-P, Qiu J-D (2017) A luminescent lanthanide coordination polymer based on energy transfer from metal to metal for hydrogen peroxide detection. Biosens Bioelectron 89:721–727

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Khan SA, Ji W, Hao L, Xu X, Agathopoulos S, Khan NZ (2017) Synthesis and characterization of Ce3+/Tb3+ co–doped CaLa4Si3O13 phosphors for application in white LED. Opt Mater 72:637–643

    CAS  Article  Google Scholar 

  30. 30.

    Jose, M. T.; Lakshmanan, A. R (2004) Ce3+ to Tb3+ energy transfer in alkaline earth (Ba, Sr or Ca) sulphate phosphors. Opt Mater 24: 651–659

  31. 31.

    Li Y, Somorjai GA (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10:2289–2295

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Shionoya S, Nakazawa E (1965) Sensitization of Tb3+ luminescence by Ce3+ and Cu+ in glasses. Appl Phys Lett 6:118–120

    CAS  Article  Google Scholar 

  33. 33.

    Park JY, Baek MJ, Choi ES, Woo S, Kim JH, Kim TJ, Jung JC, Chae KS, Chang Y, Lee GH (2009) Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3:3663–3669

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Sahu NK, Shanta Singh N, Ningthoujam RS, Bahadur D (2014) Ce3+-sensitized GdPO4:Tb3+ nanorods: an investigation on energy transfer, luminescence switching, and quantum yield. ACS Photonics 1:337–346

    CAS  Article  Google Scholar 

  35. 35.

    Oylumluoglu G (2018) Crystal structure and luminescence properties of a new two-dimensional Gd(III) complex. J Clust Sci 29:649–654

    CAS  Article  Google Scholar 

  36. 36.

    Nikl M, Nitsch K, Mihokova E, Solovieva N, Mares JA, Fabeni P, Pazzi GP, Martini M, Vedda A, Baccaro S (2000) Efficient radioluminescence of the Ce3+-doped Na–Gd phosphate glasses. Appl Phys Lett 77:2159–2161

    CAS  Article  Google Scholar 

  37. 37.

    Li W, Li W, Yu G, Wang Q, Jin R (1993) Luminescence enhancement of Eu(III) or Tb(III) complexes with organic ligands by Ln(III) (Ln=Y, La, Gd, Lu). J Alloy Compd 192:34–36

    Article  Google Scholar 

  38. 38.

    Yuan AQ, Liao S, Tong ZF, Wu J, Huang ZY (2006) Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study. Mater Lett 60:2110–2114

    CAS  Article  Google Scholar 

  39. 39.

    Pusztai P, Haspel H, Tóth IY, Tombácz E, László K, Kukovecz Á, Kónya Z (2015) Structure-independent proton transport in cerium(III) phosphate nanowires. ACS Appl Mater Interfaces 7:9947–9956

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Sumaletha N, Rajesh K, Mukundan P, Warrier KGK (2009) Environmentally benign sol-gel derived nanocrystalline rod shaped calcium doped cerium phosphate yellow-green pigment. J Sol-gel Sci Techn 52:242–250

    CAS  Article  Google Scholar 

  41. 41.

    Xu P, Yu R, Zong L, Wang J, Wang D, Deng J, Chen J, Xing X (2013) Phase evolution and photoluminescence enhancement of CePO4 nanowires from a low phosphate concentration system. J Nanopart Res 15:1622

    Article  CAS  Google Scholar 

  42. 42.

    Rodriguez-Liviano S, Becerro AI, Alcántara D, Grazú V, de la Fuente JM, Ocaña M (2013) Synthesis and properties of multifunctional tetragonal Eu: GdPO4 Nanocubes for optical and magnetic resonance imaging applications. Inorg Chem 52:647–654

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Bilecka I, Niederberger M (2010) Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale. 2:1358–1374

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Xu Z, Cao Y, Li C, Zhai X, Huang S, Kang X, Shang M, Yang D, Dai Y, Lin J (2011) Urchin-like GdPO4 and GdPO4: Eu3+ hollow spheres–hydrothermal synthesis, luminescence and drug-delivery properties. J Mater Chem 21:3686–3694

    CAS  Article  Google Scholar 

  45. 45.

    Dieu Hien TT, Roan PD, Thanh NT, Tien DM, Vu N (2018) Effect of calcination temperature on phase evolution and photoluminescent properties of GdPO4: Eu3+ nanoparticle phosphors synthesized by combustion method. Vietnam J Chem 56:793–797

    Article  CAS  Google Scholar 

  46. 46.

    Rodriguez-Liviano S, Aparicio FJ, Rojas TC, Hungría AB, Chinchilla LE, Ocaña M (2012) Microwave-assisted synthesis and luminescence of mesoporous RE-doped YPO4 (RE= Eu, Ce, Tb, and Ce + Tb) nanophosphors with lenticular shape. Cryst Growth Des 12:635–645

    CAS  Article  Google Scholar 

  47. 47.

    Xu Y, Teng B, Zhong D, Yang L, He J, Meng Y, Zhu M, Tang J (2018) Synthesis and photoluminescence properties of Y1−x(P0.6V0.4)O4: xEu3+ red-emitting phosphors. J. Mater. Sci-mater. El 29:714–720

    CAS  Google Scholar 

  48. 48.

    Somashekarappa H, Prakash Y, Hemalatha K, Demappa T, Somashekar R (2013) Preparation and characterization of HPMC/PVP blend films plasticized with sorbitol. Indian J Mater S. 2013:307514–307520

    Google Scholar 

  49. 49.

    Sawada K, Adachi S (2015) Photoluminescence and resonant energy transfer from Tb3+ to Eu3+ in Tb3Ga5O12: Eu3+ garnet phosphor. J Lumin 165:138–144

    CAS  Article  Google Scholar 

  50. 50.

    Phaomei G, Ningthoujam R, Singh WR, Loitongbam RS, Singh NS, Rath A, Juluri R, Vatsa R (2011) Luminescence switching behavior through redox reaction in Ce3+ co-doped LaPO4: Tb3+ nanorods: re-dispersible and polymer film. Dalton Trans 40:11571–11580

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Lovisa L, Fernandes Y, Garcia L, Barros B, Longo E, Paskocimas C, Bomio M, Motta F (2019) Tb3+/Pr3+ co-doped ZnMoO4 phosphor with tunable photoluminescence and energy transfer processes. Opt Mater 96:109332

  52. 52.

    Zhang Q, Pita K, Ye W, Que W (2002) Influence of annealing atmosphere and temperature on photoluminescence of Tb3+ or Eu3+-activated zinc silicate thin film phosphors via sol–gel method. Chem Phys Lett 351:163–170

  53. 53.

    Yu L, Li D, Yue M (2007) Fabrication and characterization of the photoluminescent properties of Tb3+ doped one-dimensional GdPO4 nanorods. Mater Lett 61:4374–4376

  54. 54.

    Amekura H, Eckau A, Carius R, Buchal C (1998) Room-temperature photoluminescence from Tb ions implanted in SiO2 on Si. J Appl Phys 84:3867–3871

  55. 55.

    Pedroso CC, Carvalho JM, Rodrigues LC, Holsa J, Brito HF (2016) Rapid and energy-saving microwave-assisted solid-state synthesis of Pr3+, Eu3+, or Tb3+-doped Lu2O3 persistent luminescence materials. ACS Appl Mater Interfaces 8:19593–19604

Download references

Funding

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (21705083, 21976077, and 22066019), and Natural Science Foundation of Jiangxi Province (20202BABL203019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hui-Hui Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

Supporting Information UV-Vis spectra of GdPO4: Tb3+ (Fig. S1); Studies on the doping concentration of Tb3+ ions for GdPO4: Tb3+ synthesis (Fig. S2); Studies on temperature for GdPO4: Tb3+ synthesis (Fig. S3); Studies on time for GdPO4: Tb3+ synthesis (Fig. S4); Studies on effect of pH upon GdPO4: Tb3+ (Fig. S5); Studies on effect of salt concentration upon GdPO4: Tb3+ (Fig. S6); Effect of storage time on the fluorescence of GdPO4: Tb3+ (Fig. S7); FL spectra of CePO4: Tb3+ and YBO3: Tb3+ before and after added Pr3+ ions (Fig. S8); Optimization of GdPO4: Tb3+ concentration (Fig. S9); Reaction time study (Fig. S10); Selectivity study of GdPO4: Tb3+ to organic species (Fig. S11); Comparison of different method for Pr3+ ion detection (Table S1); Results for detection of Pr3+ ions from real water samples (Table S2). (DOCX 215 kb) (DOCX 215 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, HH., Deng, J., Peng, H. et al. Praseodymium selective fluorescence recognition based on GdPO4: Tb3+ probe via energy transfer from Tb3+ to Pr3+ ions. Microchim Acta 188, 64 (2021). https://doi.org/10.1007/s00604-021-04709-0

Download citation

Keywords

  • Fluorescence probe
  • Energy transfer
  • Praseodymium ion detection
  • GdPO4: Tb3+