3D flower-liked Fe3O4/C for highly sensitive magnetic dispersive solid-phase extraction of four trace non-steroidal anti-inflammatory drugs

Abstract

A low cost-effective and simple synthesis method was adopted to acquire three-dimensional flower-like structure Fe3O4/C that has large specific area, suitable pore structure and sufficient saturation magnetism. The obtained Fe3O4/C exhibits outstanding preconcentration ability and was applied to extracting non-steroidal anti-inflammatory drugs from complex environmental and biological samples. The parameters of magnetic solid-phase extraction were optimized by univariate and multivariate methods (Box-Behnken design). The high degree of linearity from 2.5 to 1000.0 ng mL−1 (R2 ≥ 0.9976), the limits of detection from 0.25 to 0.5 ng mL- 1 (S/N = 3), and the limits of quantitation from 1.0 to 2.0 ng mL- 1 (S/N = 10) were yielded by adopting this novel method after the optimization. Moreover, the recoveries of non-steroidal anti-inflammatory drugs from 89.6 to 107.0% were acquired in spiked plasma, urine and lake samples. In addition, the adsorption of non-steroidal anti-inflammatory drugs on Fe3O4/C was explored by adsorption isotherms and kinetic studies. Furthermore, the adsorption mechanism for non-steroidal anti-inflammatory drugs by Fe3O4/C was proposed, which was hydrogen bonding and π-π interaction between non-steroidal anti-inflammatory drugs and Fe3O4/C.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Farré M, Petrovic M, Barceló D (2007) Recently developed GC/MS and LC/MS methods for determining NSAIDs in water samples. Anal Bioanal Chem 387:1203–1214. https://doi.org/10.1007/s00216-006-0936-x

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Asghari A, Khanalipoor F, Barfi B, Rajabi M (2016) Optimized miniaturized air-assisted liquid-liquid microextraction for determination of non-steroidal anti-inflammatory drugs in bio-fluid samples. RSC Adv 6:109473–109484. https://doi.org/10.1039/C6RA18795A

    CAS  Article  Google Scholar 

  3. 3.

    Van Pamel E, Daeseleire E (2015) A multiresidue liquid chromatographic/tandem mass spectrometric method for the detection and quantitation of 15 nonsteroidal anti-inflammatory drugs (NSAIDs) in bovine meat and milk. Anal Bioanal Chem 407:4485–4494. https://doi.org/10.1007/s00216-015-8634-1

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    de Voogt P, Janex-Habibi ML, Sacher F, Puijker L, Mons M (2009) Development of a common priority list of pharmaceuticals relevant for the water cycle. Water Sci Technol 59:39–46. https://doi.org/10.2166/wst.2009.764

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bialk-Bielinska A, Kumirska J, Borecka M, Caban M, Paszkiewicz M, Pazdro K, Stepnowski P (2016) Selected analytical challenges in the determination of pharmaceuticals in drinking/marine waters and soil/sediment samples. J Pharm Biomed Anal 121:271–296. https://doi.org/10.1016/j.jpba.2016.01.016

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Azhar MR, Abid HR, Sun HQ, Periasamy V, Tadé MO, Wang SB (2016) Excellent performance of copper based metal organic framework in adsorptive removal of toxic sulfonamide antibiotics from wastewater. J Colloid Interface Sci 478:344–352. https://doi.org/10.1016/j.jcis.2016.06.032

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. https://doi.org/10.1016/j.envpol.2013.09.009

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Li Y, Liao YM, Huang YF, Ye ZW, Huang XJ (2019) Dual functional monomers modified magnetic adsorbent for the enrichment of non-steroidal anti-inflammatory drugs in water and urine samples. Talanta 201:496–502. https://doi.org/10.1016/j.talanta.2019.04.043

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Barfia B, Asgharia A, Rajabia M, Goochani Moghadama A, Mirkhania N, Ahmadi F (2015) Comparison of ultrasound-enhanced air-assisted liquid–liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples. J Pharm Biomed Anal 111:297–305. https://doi.org/10.1016/j.jpba.2015.03.034

    CAS  Article  Google Scholar 

  10. 10.

    Kabir A, Locatelli M, Ulusoy HI (2017) Recent trends in microextraction techniques employed in analytical and bioanalytical sample preparation. Separations 4:36. https://doi.org/10.3390/separations4040036

    CAS  Article  Google Scholar 

  11. 11.

    Liu XY, Xu D, Zhang DF, Zhang GZ, Zhang L (2016) Superior performance of 3 D co-Ni bimetallic oxides for catalytic degradation of organic dye: investigation the effect of catalyst morphology and catalytic mechanism. Appl Catal B Environ 186:193–203. https://doi.org/10.1016/j.apcatb.2016.01.005

    CAS  Article  Google Scholar 

  12. 12.

    Šafaříková M, Šafařík I (1999) Magnetic solid-phase extraction. J Magn Magn Mater 194:108–112. https://doi.org/10.1016/S0304-8853(98)00566-6

    Article  Google Scholar 

  13. 13.

    Safari M, Yamini Y, Mani-Varnosfaderani A, Asiabi H (2017) Synthesis of Fe3O4@PPy-MWCNT nanocomposite and its application for extraction of ultra-trace amounts of PAHs from various samples. J Iran Chem Soc 14:623–634. https://doi.org/10.1007/s13738-016-1012-x

    CAS  Article  Google Scholar 

  14. 14.

    Jalilian N, Ebrahimzadeh H, Asgharinezhad AA (2018) Determination of acidic, basic and amphoteric drugs in biological fluids and wastewater after their simultaneous dispersive micro-solid phase extraction using multiwalled carbon nanotubes/magnetite nanoparticles@poly(2-aminopyrimidine) composite. Microchem J 143:337–349. https://doi.org/10.1016/j.microc.2018.08.037

    CAS  Article  Google Scholar 

  15. 15.

    Liu XY, An S, Wang YJ, Yang Q, Zhang L (2015) Rapid selective separation and recovery of a specific target dye from mixture consisted of different dyes by magnetic Ca-ferrites nanoparticles. Chem Eng J 262:517–526. https://doi.org/10.1016/j.cej.2014.10.002

    CAS  Article  Google Scholar 

  16. 16.

    Mirzajani R, Kardani F, Ramezani Z (2019) Preparation and characterization of magnetic metal-organic framework nanocomposite as solid-phase microextraction fifibers coupled with high-performance liquid chromatography for determination of non-steroidal anti-inflflammatory drugs in biological flfluids and tablet formulation samples. Microchem J 144:270–284. https://doi.org/10.1016/j.microc.2018.09.014

    CAS  Article  Google Scholar 

  17. 17.

    Balasubramani U, Venkatesh R, Subramaniam S, Gopalakrishnan G, Sundararajan V (2017) Alumina/activated carbon nano-composites: synthesis and application in sulphide ion removal from water. J Hazard Mater 340:241–252. https://doi.org/10.1016/j.jhazmat.2017.07.006

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Dahanec S, Garcia MDG, Buenoa MJM, Morenoa AU, Galeraa MM, Derdourc A (2013) Determination of drugs in river and wastewaters using solid-phase extraction by packed multi-walled carbon nanotubes and liquid chromatography-quadrupole-linear ion trap-mass spectrometry. J Chromatogr A 1297:17–28. https://doi.org/10.1016/j.chroma.2013.05.002

    CAS  Article  Google Scholar 

  19. 19.

    El-Sheikh AH, Qawariq RF, Abdelghani JI (2019) Adsorption and magnetic solid-phase extraction of NSAIDs from pharmaceutical wastewater using magnetic carbon nanotubes: effect of sorbent dimensions, magnetite loading and competitive adsorption study. Environ Technol Inno 16:100496. https://doi.org/10.1016/j.eti.2019.100496

    Article  Google Scholar 

  20. 20.

    Yuvali D, Narin I, Soylak M, Yilmaz E (2020) Green synthesis of magnetic carbon nanodot/graphene oxide hybrid material (Fe3O4@C-nanodot@GO) for magnetic solid phase extraction of ibuprofen in human blood samples prior to HPLC-DAD determination. J Pharm Biomed Anal 179:113001. https://doi.org/10.1016/j.jpba.2019.113001

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Tran TV, Nguyen DTC, Led HTN, Bach LG, Vo DVN, Dao TT, Lim KT, Nguyen TD (2019) Effect of thermolysis condition on characteristics and nonsteroidal anti-inflammatory drugs (NSAIDs) absorbability of Fe-MIL-88B-derived mesoporous carbons. J Environ Chem Eng 7:103356. https://doi.org/10.1016/j.jece.2019.103356

    CAS  Article  Google Scholar 

  22. 22.

    Shan DN, Deng SB, Zhao TN, Wang B, Wang YJ, Huang J, Yu G, Winglee J, Wiesner MR (2016) Preparation of ultrafine magnetic biochar and activated carbon for pharmaceutical adsorption and subsequent degradation by ball milling. J Hazard Mater 305:156–163. https://doi.org/10.1016/j.jhazmat.2015.11.047

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Asgharinezhad AA, Ebrahimzadeh H (2016) A simple and fast method based on mixed hemimicelles coated magnetite nanoparticles for simultaneous extraction of acidic and basic pollutants. Anal Bioanal Chem 408:473–486. https://doi.org/10.1007/s00216-015-9114-3

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Jalilian N, Ebrahimzadeh H, Asgharinezhad AA, Molae K (2017) Extraction and determination of trace amounts of gold(III), palladium(II), platinum(II) and silver(I) with the aid of a magnetic nanosorbent made from Fe3O4-decorated and silica-coated graphene oxide modified with a polypyrrole-polythiophene copolymer. Microchim Acta 184:2191–2200. https://doi.org/10.1007/s00604-017-2170-y

    CAS  Article  Google Scholar 

  25. 25.

    Asgharinezhad AA, Ebrahimzadeh H (2015) Coextraction of acidic, basic and amphiprotic pollutants using multiwalled carbon nanotubes/magnetite nanoparticles@polypyrrole composite. J Chromatogr A 1412:1–11. https://doi.org/10.1016/j.chroma.2015.07.087

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Jalilian N, Ebrahimzadeh H, Asgharinezhad AA (2019) Preparation of magnetite/multiwalled carbon nanotubes/metal-organic framework composite for dispersive magnetic micro solid phase extraction of parabens and phthalate esters from water samples and various types of cream for their determination with liquid chromatography. Journal of Chromatogra A 1608:460426. https://doi.org/10.1016/j.chroma.2019.460426

    CAS  Article  Google Scholar 

  27. 27.

    Li L, Kovalchuk A, Fei HL, Peng ZW, Li YL, Kim ND, Xiang CS, Yang Y, Ruan G, Tour JM (2015) Enhanced cycling stability of Lithium-ion batteries using Graphene-wrapped Fe3O4-Graphene Nanoribbons as anode materials. Adv Mater 5:1500171. https://doi.org/10.1002/aenm.201500171

    CAS  Article  Google Scholar 

  28. 28.

    Shi Y, Zhang J, Bruck AM, Zhang YM, Li J, Stach EA, Takeuchi KJ, Marschilok AC, Takeuchi ES, Yu GH (2017) Tunable 3D nanostructured conductive gel framework electrode for high-performance Lithium ion batteries. Adv Mater 29:1603922. https://doi.org/10.1002/adma.201603922

    CAS  Article  Google Scholar 

  29. 29.

    Ma FX, Hu H, Wu HB, Xu CY, Xu Z, Zhen L, Lou XW (2015) Formation of uniform Fe3O4 hollow spheres organized by ultrathin Nanosheets and their excellent Lithium storage properties. Adv Mater 27:4097–4101. https://doi.org/10.1002/adma.201501130

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Wang Y, Wu XQ, Zhang L (2018) Three-dimensional hollow porous raspberry-like hierarchical co/Ni@carbon microspheres for magnetic solid-phase extraction of pyrethroids. Microchim Acta 185:437. https://doi.org/10.1007/s00604-018-2973-5

    CAS  Article  Google Scholar 

  31. 31.

    Wang JJ, Zhang WH, Wei J (2019) Fabrication of poly (b-cyclodextrin)-conjugated magnetic graphene oxide by surface-initiated RAFT polymerization for synergetic adsorption of heavy metal ions and organic pollutants. J Mater Chem A 7:2055–2065. https://doi.org/10.1039/c8ta09250h

    CAS  Article  Google Scholar 

  32. 32.

    Li WY, Wang JR, He GJ, Yu L, Noor N, Sun YG, Zhou XY, Hu JQ, Parkin IP (2017) Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. J Mater Chem A 5:4352–4358. https://doi.org/10.1039/C6TA09116D

    CAS  Article  Google Scholar 

  33. 33.

    Dougherty DA (1996) Cation-π interactions in chemistry and biology: a new view of benzene, phe, tyr, and trp. Science 271:163–168. https://doi.org/10.1126/science.271.5246.163

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Yang L, Zhang Y, Liu X, Jiang X, Zhang Z, Zhang T, Zhang L (2014) The investigation of synergistic and competitive interaction between dye Congo red and methyl blue on magnetic MnFe2O4. Chem Eng J 246:88–96. https://doi.org/10.1016/j.cej.2014.02.044

    CAS  Article  Google Scholar 

  35. 35.

    Tong Y, Liu XY, Zhang L (2019) One-pot fabrication of magnetic porous Fe3C/MnO/graphitic carbon microspheres for dispersive solid-phase extraction of herbicides prior to their quantification by HPLC. Microchim Acta 186:256. https://doi.org/10.1007/s00604-019-3358-0

    CAS  Article  Google Scholar 

  36. 36.

    Xiao JL, Lv WY, Xie Z, Tan YQ, Song YH, Zheng Q (2016) Environmentally friendly reduced graphene oxide as a broad-spectrum adsorbent for anionic and cationic dyes via π-π interactions. J Mater Chem A 4:12126–12135. https://doi.org/10.1039/C6TA04119A

    CAS  Article  Google Scholar 

  37. 37.

    Madikizela LM, Tavengwa NT, Chimuka L (2018) Applications of molecularly imprinted polymers for solid-phase extraction of non-steroidal anti-inflammatory drugs and analgesics from environmental waters and biological samples. J Pharm Biomed Anal 147:624–633. https://doi.org/10.1016/j.jpba.2017.04.010

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Yaacob SFFS, Kamboh MA, Ibrahim WAW, Mohamad S (2018) New sporopollenin-based β-cyclodextrin functionalized magnetic hybrid adsorbent for magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs from water samples. R Soc Open Sci 5:171311. https://doi.org/10.1098/rsos.171311

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Foundation of Ocean and Fisheries of Liaoning Province (No. 201408, No. 201406), Liaoning Provincial Doctor Startup Fund Program (No. 201601092), the General project of scientific research of the Education Department of Liaoning Province (No. LQN201707), Liaoning Provincial Natural Science Fund Guidance Project (20180550928) and the Foundation for National Advance declaration of Liaoning University (No. LDGY201406).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xu Xu or Lei Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 406 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Feng, X., Liu, Z. et al. 3D flower-liked Fe3O4/C for highly sensitive magnetic dispersive solid-phase extraction of four trace non-steroidal anti-inflammatory drugs. Microchim Acta 188, 52 (2021). https://doi.org/10.1007/s00604-021-04708-1

Download citation

Keywords

  • 3D flower-like structure
  • Fe3O4/C
  • Magnetic solid-phase extraction
  • NSAIDs
  • Environmental and biological samples