Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe


The aggregation of amyloid-β oligomers (AβOs) with extremely strong neurotoxicity has been proved to be the main pathogenesis of Alzheimer’s disease (AD). For sensitive quantification of AβOs, a switchable electrochemical aptasensor is proposed. Metal organic framework carrying Au nanoparticles (AuNPs@CuMOF) has been used to label signaling displaced-probe (SD), which formed triple helix switch (THS) by hybridizing with label-free anti-AβOs aptamer (Apt) on the electrodeposited palladium electrode (EPd). Thus, a relatively strong response of differential pulse voltammetry (DPV) was produced (switch on). With the specific binding between AβOs and Apt, the DPV response obviously decreased, owing to destroyed structure of THS and the separation of AuNPs@CuMOF/SD from the EPd (switch off). The mode of “switch on-off” can dramatically enhance the AβOs-dependent DPV intensity change. As a result, the switchable EA exhibited excellent selectivity and sensitivity with the linear range from 0.5 fM to 500 fM and the detection limit of 0.25 fM. When evaluating the AβOs of artificial cerebrospinal fluid (aCSF) samples, the switchable EA exhibited desirable feasibility, and the results are basically consistent with the enzyme linked immunosorbent assay (ELISA). The work could provide a potential tool of the AD diagnosis and a bright future in clinical applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Hampel H, Prvulovic D, Teipel S, Jessen F, Luckhaus C, Frölich L, Riepe MW, Dodel R, Leyhe T, Bertram L, Hoffmann W, Faltraco F (2011) The future of Alzheimer's disease: the next 10 years. Prog Neurobiol 95(4):718–728. https://doi.org/10.1016/j.pneurobio.2011.11.008

    Article  PubMed  Google Scholar 

  2. 2.

    Mattson MP (2004) Pathways towards and away from Alzheimer's disease (vol 430, pg 631, 2004). Nature 431(7004):107–107. https://doi.org/10.1038/nature02940

    CAS  Article  Google Scholar 

  3. 3.

    Jamerlan A, An SSA, Hulme J (2020) Advances in amyloid beta oligomer detection applications in Alzheimer's disease. TrAC Trends Anal Chem 129:115919. https://doi.org/10.1016/j.trac.2020.115919

    CAS  Article  Google Scholar 

  4. 4.

    Sengupta U, Nilson AN, Kayed R (2016) The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine 6:42–49. https://doi.org/10.1016/j.ebiom.2016.03.035

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Peters C, Espinoza MP, Gallegos S, Opazo C, Aguayo LG (2015) Alzheimer's Aβ interacts with cellular prion protein inducing neuronal membrane damage and synaptotoxicity. Neurobiol Aging 36(3):1369–1377. https://doi.org/10.1016/j.neurobiolaging.2014.11.019

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bittar A, Bhatt N, Kayed R (2020) Advances and considerations in AD tau-targeted immunotherapy. Advances and considerations in AD tau-targeted immunotherapy Neurobiol Dis 134:134. https://doi.org/10.1016/j.nbd.2019.104707

    CAS  Article  Google Scholar 

  7. 7.

    Jin X, Liu C, Xu T, Su L, Zhang X (2020) Artificial intelligence biosensors: challenges and prospects. Biosens Bioelectron 165:112412. https://doi.org/10.1016/j.bios.2020.112412

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J (2019) Advances in biosensors for the detection of ochratoxin a: bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 141:111418. https://doi.org/10.1016/j.bios.2019.111418

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhou YL, Zhang HQ, Liu LT, Li CM, Chang Z, Zhu X, Ye BX, Xu MT (2016) Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of beta-amyloid oligomers. Sci Rep 6:35186. https://doi.org/10.1038/srep35186

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    You M, Yang S, An Y, Zhang F, He P (2020) A novel electrochemical biosensor with molecularly imprinted polymers and aptamer-based sandwich assay for determining amyloid-β oligomer. J Electroanal Chem 862:114017. https://doi.org/10.1016/j.jelechem.2020.114017

    CAS  Article  Google Scholar 

  11. 11.

    Zhang Y, Figueroa-Miranda G, Lyu Z, Zafiu C, Willbold D, Offenhäusser A, Mayer D (2019) Monitoring amyloid-β proteins aggregation based on label-free aptasensor. Sensors Actuators B Chem 288:535–542. https://doi.org/10.1016/j.snb.2019.03.049

    CAS  Article  Google Scholar 

  12. 12.

    Dervisevic M, Dervisevic E, Senel M (2019) Recent progress in nanomaterial-based electrochemical and optical sensors for hypoxanthine and xanthine. A review Microchim Acta 186:749. https://doi.org/10.1007/s00604-019-3842-6

    CAS  Article  Google Scholar 

  13. 13.

    Osman DI, El-Sheikh SM, Sheta SM, Ali OI, Salem AM, Shousha WG, El-Khamisy SF, Shawky SM (2019) Nucleic acids biosensors based on metal-organic framework (MOF): paving the way to clinical laboratory diagnosis. Biosens Bioelectron 141:111451. https://doi.org/10.1016/j.bios.2019.111451

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Wang YF, Zhang Y, Sha HF, Xiong X, Jia NQ (2019) Design and biosensing of a Ratiometric Electrochemiluminescence resonance energy transfer Aptasensor between a g-C3N4 Nanosheet and Ru@MOF for amyloid-beta protein. ACS Appl Mater Interfaces 11(40):36299–36306. https://doi.org/10.1021/acsami.9b09492

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Zhou YL, Li CM, Li XQ, Zhu X, Ye BX, Xu MT (2018) A sensitive aptasensor for the detection of beta-amyloid oligomers based on metal-organic frameworks as electrochemical signal probes. Anal Methods 10(36):4430–4437. https://doi.org/10.1039/c8ay00736e

    CAS  Article  Google Scholar 

  16. 16.

    Xiao Q, Feng JR, Feng MM, Li JW, Liu Y, Wang D, Huang S (2019) A ratiometric electrochemical aptasensor for ultrasensitive determination of adenosine triphosphate via a triple-helix molecular switch. Microchim Acta 186:478. https://doi.org/10.1007/s00604-019-3630-3

    CAS  Article  Google Scholar 

  17. 17.

    Bagheri E, Abnous K, Alibolandi M, Ramezani M, Taghdisi SM (2018) Triple-helix molecular switch-based aptasensors and DNA sensors. Biosens Bioelectron 111: 1–9. https://doi.org/10.1016/j.bios.2018.03.070, 1

  18. 18.

    Hu MS, Yang HM, Li ZL, Zhang LN, Zhu PH, Yan M, Yu JH (2020) Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Biosens Bioelectron 147:111786. https://doi.org/10.1016/j.bios.2019.111786

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Ramezani M, Danesh NM, Lavaee P, Abnous K, Taghdisi SM (2015) A novel colorimetric triple-helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosens Bioelectron 70:181–187. https://doi.org/10.1016/j.bios.2015.03.040

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Stine WB, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278(13):11612–11622. https://doi.org/10.1074/jbc.M210207200

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Zhou XX, Guo SJ, Gao JX, Zhao JM, Xue SY, Xu WJ (2017) Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens Bioelectron 98:83–90. https://doi.org/10.1016/j.bios.2017.06.039

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Negahdary M, Heli H (2019) An ultrasensitive electrochemical aptasensor for early diagnosis of Alzheimer’s disease, using a fern leaves-like gold nanostructure. Talanta 198:510–517. https://doi.org/10.1016/j.talanta.2019.01.109

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Elancheziyan M, Senthilkumar S (2019) Covalent immobilization and enhanced electrical wiring of hemoglobin using gold nanoparticles encapsulated PAMAM dendrimer for electrochemical sensing of hydrogen peroxide. Appl Surf Sci 495:143540. https://doi.org/10.1016/j.apsusc.2019.143540

    CAS  Article  Google Scholar 

  24. 24.

    Yoo SS, Kim SY, Kim KS, Hong S, Oh MJ, Nam MG, Kim W-J, Park J, Chung C-H, Choe W-S, Yoo PJ (2020) Controlling inter-sheet-distance in reduced graphene oxide electrodes for highly sensitive electrochemical impedimetric sensing of myoglobin. Sensors Actuators B Chem 305:127477. https://doi.org/10.1016/j.snb.2019.127477

    CAS  Article  Google Scholar 

  25. 25.

    Han YP, Zhang F, Gong H, Cai CQ (2019) Functional three helix molecular beacon fluorescent "turn-on" probe for simple and sensitive simultaneous detection of two HIV DNAs. Sensors Actuators B Chem 281:303–310. https://doi.org/10.1016/j.snb.2018.10.110

    CAS  Article  Google Scholar 

  26. 26.

    Song YJ, Feng LY, Ren JS, Qu XG (2011) Stabilization of unstable CGC(+) triplex DNA by single-walled carbon nanotubes under physiological conditions. Nucleic Acids Res 39(15):6835–6843. https://doi.org/10.1093/nar/gkr322

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Zheng J, Li JS, Jiang Y, Jin JY, Wang KM, Yang RH, Tan WH (2011) Design of Aptamer-Based Sensing Platform Using Triple-Helix Molecular Switch. Anal Chem 83(17):6586–6592. https://doi.org/10.1021/ac201314y

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Zheng Y, Wang Q, Yang X, Nie W, Zou L, Liu X, Wang K (2019) Aptamer as a tool for investigating the effects of electric field on Aβ40 monomer and aggregates using single-molecule force spectroscopy. Anal Chem 91(3):1954–1961. https://doi.org/10.1021/acs.analchem.8b04278

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Ren H-X, Miao Y-B, Zhang Y (2020) An aptamer based fluorometric assay for amyloid-β oligomers using a metal-organic framework of type Ru@MIL-101(Al) and enzyme-assisted recycling. Microchim Acta 187(2):114. https://doi.org/10.1007/s00604-019-4092-3

    CAS  Article  Google Scholar 

  30. 30.

    Deng C, Liu H, Si S, Zhu X, Tu Q, Jin Y, Xiang J (2020) An electrochemical aptasensor for amyloid-β oligomer based on double-stranded DNA as “conductive spring”. Microchim Acta 187(4):239. https://doi.org/10.1007/s00604-020-4217-8

    CAS  Article  Google Scholar 

Download references


The work was supported by the “Qinglan Project” funded by universities in Jiangsu and the Fundamental Research Funds for the Central Universities (No.2242020 K40191).

Author information



Corresponding author

Correspondence to Xiaoying Wang.

Ethics declarations

Conflict of interest

the authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Li, L., Gu, X. et al. Switchable electrochemical aptasensor for amyloid-β oligomers detection based on triple helix switch coupling with AuNPs@CuMOF labeled signaling displaced-probe. Microchim Acta 188, 49 (2021). https://doi.org/10.1007/s00604-021-04704-5

Download citation


  • Electrochemical aptasensor
  • Amyloid-β oligomers
  • Triple helix switch
  • Metal-organic framework
  • Signaling displaced-probe