Nanozyme based on CoFe2O4 modified with MoS2 for colorimetric determination of cysteine and glutathione

Abstract

A nanozyme based on CoFe2O4 modified with MoS2 was constructed for colorimetric determination of cysteine (Cys) and glutathione (GSH). Firstly, ferrite CoFe2O4 is synthesized, and it is then modified by MoS2 to form a flower-like polymer (MoS2@CoFe2O4). In the presence of H2O2, a redox interaction takes place, and the resulting hydroxyl promoted a colorimetric conversion from colorless to blue in the presence of 3,3′,5,5′-tetramethylbenzidine (TMB). However, once Cys or GSH is added, they are capable to compete with the interaction of the hydroxyl with TMB, resulting in an inhibition of the colorimetric conversion. The colorimetric distinction is sensitive to the amount of target. The results obtained proved that the catalytic efficiency of MoS2@CoFe2O4 is 4.4-fold and 1.8-fold to that of MoS2 and CoFe2O4. Meanwhile, the Km values to TMB and H2O2 are 0.067 and 0.048 mM, respectively, which are 6.5-fold and 77-fold, respectively smaller than those of natural peroxidase such as HPR. This indicates that the MoS2@CoFe2O4 possesses a favorable interaction affinity. Additionally, the colorimetric distinction caused by the competition between TMB and cysteine or glutathione is obvious. The signal responses to cysteine and glutathione are linear in the range 0.5~15 μM and 0.5~35 μM, and the LODs are 0.10 and 0.21 μM, respectively. In practical assay of Cys in serum, the RSD of the sample tests is 4.6%, and the recoveries for the spiked assays are 95.3% and 96.0% with the RSD of 2.1% and 4.2%, respectively.

Graphical abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Kappi FA, Papadopoulos GA, Tsogas GZ, Giokas DL (2017) Low-cost colorimetric assay of biothiols based on the photochemical reduction of silver halides and consumer electronic imaging devices. Talanta 172:15–22. https://doi.org/10.1016/j.talanta.2017.05.014

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Kappi FA, Tsogas GZ, Routsi A-M, Christodouleas DC, Giokas DL (2018) Paper-based devices for biothiols sensing using the photochemical reduction of silver halides. Anal Chim Acta 1036:89–96. https://doi.org/10.1016/j.aca.2018.05.062

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL (2017) Recent advances in nanomaterial probes for optical biothiol sensing: a review. Anal Lett 51:443–468. https://doi.org/10.1080/00032719.2017.1329833

    CAS  Article  Google Scholar 

  4. 4.

    Bravo-Veyrat S, Hopfgartner G (2018) High-throughput liquid chromatography differential mobility spectrometry mass spectrometry for bioanalysis: determination of reduced and oxidized form of glutathione in human blood. Anal Bioanal Chem 410:7153–7161. https://doi.org/10.1007/s00216-018-1318-x

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Zhang B, Jia Y, Wang J, Hu X, Zhao Z, Cheng Y (2019) Cysteine-assisted photoelectrochemical immunoassay for the carcinoembryonic antigen by using an ITO electrode modified with C3N4-BiOCl semiconductor and CuO nanoparticles as antibody labels. Microchim Acta 186:633. https://doi.org/10.1007/s00604-019-3706-0

    CAS  Article  Google Scholar 

  6. 6.

    Sheng Z, Chen L (2017) Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine. Anal Bioanal Chem 409:6081–6090. https://doi.org/10.1007/s00216-017-0541-1

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Wu G, Zhou J, Jiang X, Guo X, Gao F (2013) Electrochemical detection of low-molecular-mass Biothiols in biological fluids at carbon spheres-modified glassy carbon electrodes. Electrocatal 4:17–23. https://doi.org/10.1007/s12678-012-0107-0

    CAS  Article  Google Scholar 

  8. 8.

    Jiang Y, Yang Q, Xu Q, Lu S, Hu L, Xu M, Liu Y (2019) Metal organic framework MIL-53(Fe) as an efficient artificial oxidase for colorimetric detection of cellular biothiols. Anal Biochem 577:82–88. https://doi.org/10.1016/j.ab.2019.04.020

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zheng W, Shen D, Pan Y, Yi D, Long Y, Zheng H (2019) Enhancing the peroxidase-like activity of ficin by rational blocking thiol groups for colorimetric detection of biothiols. Talanta 204:833–839. https://doi.org/10.1016/j.talanta.2019.06.073

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Niu X, He Y, Pan J, Li X, Qiu F, Yan Y, Shi L, Zhao H, Lan M (2016) Uncapped nanobranch-based CuS clews used as an effificient peroxidase mimic enable the visual detection of hydrogen peroxide and glucose with fast response. Anal Chim Acta 947:42–49. https://doi.org/10.1016/j.aca.2016.10.013

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Song C, Ding W, Zhao W, Liu H, Wang J, Yao Y, Yao C (2020) High peroxidase-like activity realized by facile synthesis of FeS2 nanoparticles for sensitive colorimetric detection of H2O2 and glutathione. Biosens Bioelectron 151:111983. https://doi.org/10.1016/j.bios.2019.111983

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wu K, Feng Y, Li Y, Li L, Liu R, Zhu L (2020) S-doped reduced graphene oxide: a novel peroxidase mimetic and its application in sensitive detection of hydrogen peroxide and glucose. Anal Bioanal Chem 412:5477–5487. https://doi.org/10.1007/s00216-020-02767-6

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Chaibakhsh N, Moradi-Shoeili Z (2019) Enzyme mimetic activities of spinel substituted nanoferrites (MFe2O4): a review of synthesis, mechanism and potential applications. Mater Sci Eng C 99:1424–1447. https://doi.org/10.1016/j.msec.2019.02.086

    CAS  Article  Google Scholar 

  14. 14.

    Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84:5753–5758. https://doi.org/10.1021/ac300939z

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Wu L, Wan G, Hu N, He Z, Shi S, Suo Y, Wang K, Xu K, Xu X, Tang Y, Wang G (2018) Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nanomaterials 8:451. https://doi.org/10.3390/nano8070451

    CAS  Article  PubMed Central  Google Scholar 

  16. 16.

    Liu B, Wang W, Wang J, Zhang J, Zhang Y, Xu K, Zhao F (2019) Preparation and catalytic activities of CuFe2O4 nanoparticles assembled with graphene oxide for RDX thermal decomposition. J Nanopart Res 21:48. https://doi.org/10.1007/s11051-019-4493-6

    CAS  Article  Google Scholar 

  17. 17.

    Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, Tang J (2013) In situ controllable growth of CoFe2O4 ferrite nanocubes on graphene for colorimetric detection of hydrogen peroxide. J Mater Chem A 1:4352–4357. https://doi.org/10.1039/C3TA00774J

    CAS  Article  Google Scholar 

  18. 18.

    Ma W, Wang N, Yang L, Lv M, Zhu Z, Li S (2020) Fabrication of high photocatalytic activity and easy recovery photocatalysts with ZnFe2O4 supported on ultrathin MoS2 nanosheets. J Mater Sci Mater Electron 31:8761–8772. https://doi.org/10.1007/s10854-020-03411-w

    CAS  Article  Google Scholar 

  19. 19.

    Wang S, Zhao Y, Xue H, Xie J, Feng C, Li H, Shi D, Muhammad S, Jiao Q (2018) Preparation of flower-like CoFe2O4@graphene composites and their microwave absorbing properties. Mater Lett 223:186–189. https://doi.org/10.1016/j.matlet.2018.04.050

    CAS  Article  Google Scholar 

  20. 20.

    Li R, Cai M, Xie Z, Zhang Q, Zeng Y, Liu H, Liu G, Lv W (2019) Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation. Appl Catal B Environ 244:974–982. https://doi.org/10.1016/j.apcatb.2018.12.043

    CAS  Article  Google Scholar 

  21. 21.

    Wang C, Li J, Tan R, Wang Q, Zhang Z (2019) Colorimetric method for glucose detection with enhanced signal intensity by using ZnFe2O4-carbon nanotube-glucose oxidase composite material. Analyst 144:1831–1839. https://doi.org/10.1039/C8AN02330A

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Zhang G, Yu Y, Zhang L, Lin B, Wang Y, Guo M, Cao Y (2020) Precise detection of prostate specific antigen in serum: a surface molecular imprinted sensor based on novel cooperated signal amplification strategy. Sensors Actuators B Chem 302:126998. https://doi.org/10.1016/j.snb.2019.126998

    CAS  Article  Google Scholar 

  23. 23.

    Qi C, Cai S, Wang X, Li J, Lian Z, Sun S, Yang R, Wang C (2016) Enhanced oxidase/peroxidase-like activities of aptamer conjugated MoS2/PtCu nanocomposites and their biosensing application. RSC Adv 6:54949–54955. https://doi.org/10.1039/C6RA03507H

    CAS  Article  Google Scholar 

  24. 24.

    Jiang Z, Liu Y, Hu X, Li Y (2014) Colorimetric determination of thiol compounds in serum based on Fe-MIL-88NH2 metal-organic framework as peroxidase mimetics. Anal Methods 6:5647–5651. https://doi.org/10.1039/C4AY00747F

    CAS  Article  Google Scholar 

  25. 25.

    Zeng Y, Guo N, Song Y, Zhao Y, Li H, Xu X, Qiu J, Yu H (2018) Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity. J Colloid Interface Sci 514:664–674. https://doi.org/10.1016/j.jcis.2017.12.079

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Ren B, Shen W, Li L, Wu S, Wang W (2018) 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Appl Surf Sci 447:711–723. https://doi.org/10.1016/j.apsusc.2018.04.064

    CAS  Article  Google Scholar 

  27. 27.

    Wang X, Zhu T, Chang S, Lu Y, Mi W, Wang W (2020) 3D nest-like architecture of core−shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl Mater Interfaces 12:11252–11264. https://doi.org/10.1021/acsami.9b23489

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Zhang S, Lin B, Yu Y, Cao Y, Guo M, Shui L (2018) A ratiometric nanoprobe based on silver nanoclusters and carbon dots for the fluorescent detection of biothiols. Spectrochim Acta A Mol Biomol Spectrosc 195:230–235. https://doi.org/10.1016/j.saa.2018.01.078

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Zhang Y, Zhou Z, Wen F, Tan J, Peng T, Luo B, Wang H, Yin S (2018) A flower-like MoS2-decorated MgFe2O4 nanocomposite: mimicking peroxidase and colorimetric detection of H2O2 and glucose. Sensors Actuators B Chem 275:155–162. https://doi.org/10.1016/j.snb.2018.08.051

    CAS  Article  Google Scholar 

  30. 30.

    Yuan C, Qin X, Xu Y, Li X, Chen Y, Shi R, Wang Y (2020) Carbon quantum dots originated from chicken blood as peroxidase mimics for colorimetric detection of biothiols. J Photochem Photobiol A Chem 396:112529. https://doi.org/10.1016/j.jphotochem.2020.112529

    CAS  Article  Google Scholar 

  31. 31.

    Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T (2014) Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B 2:6097–6105. https://doi.org/10.1039/C4TB00968A

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Chen C, Wang Y, Zhang D (2019) Peroxidase-like activity of vanadium tetrasulfide submicrospheres and its application to the colorimetric detection of hydrogen peroxide and L-cysteine. Microchim Acta 186:784. https://doi.org/10.1007/s00604-019-3942-3

    CAS  Article  Google Scholar 

  33. 33.

    Yang Z, Zhu Y, Nie G, Li M, Wang C, Lu X (2017) FeCo nanoparticles- embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of L-cysteine. Dalton Trans 46:8942–8949. https://doi.org/10.1039/C7DT01611E

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Li W, Wang J, Zhu J, Zhu J, Zheng Y (2018) Co3O4 nanocrystals as an efficient catalase mimic for colorimetric detection of glutathione. J Mater Chem B 6:6858–6864. https://doi.org/10.1039/C8TB01948G

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Feng J, Huang P, Shi S, Deng K, Wu F (2017) Colorimetric detection of glutathione in cells based on peroxidase-like activity of gold nanoclusters: a promising powerful tool for identifying cancer cells. Anal Chim Acta 967:64–69. https://doi.org/10.1016/j.aca.2017.02.025

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Ma Y, Zhang Z, Ren C, Liu G, Chen X (2012) A novel colorimetric determination of reduced glutathione in A549 cells based on Fe3O4 magnetic nanoparticles as peroxidase mimetics. Analyst 137:485–489. https://doi.org/10.1039/C1AN15718C

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bian B, Liu Q, Yu S (2019) Peroxidase mimetic activity of porphyrin modified ZnFe2O4/reduced graphene oxide and its application for colorimetric detection of H2O2 and glutathione. Colloids Surf B: Biointerfaces 181:567–575. https://doi.org/10.1016/j.colsurfb.2019.06.008

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Liu J, Meng L, Fei Z, Dyson PJ, Jing X, Liu X (2017) MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens Bioelectron 90:69–74. https://doi.org/10.1016/j.bios.2016.11.046

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 21575043, 52070080 and 22004039), the Platform Construction Project of Guangzhou Science Technology and Innovation Commission (No. 15180001), and the Ministry of Education University-Industry Collaborative Education Program (No. 201901100003).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Li Zhang or Ying Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 2972 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xian, Z., Zhang, L., Yu, Y. et al. Nanozyme based on CoFe2O4 modified with MoS2 for colorimetric determination of cysteine and glutathione. Microchim Acta 188, 65 (2021). https://doi.org/10.1007/s00604-021-04702-7

Download citation

Keywords

  • Nanozyme
  • MoS2@CoFe2O4
  • Cysteine
  • Glutathione
  • Colorimetric determination