Polyacrylonitrile/MIL-53(Fe) electrospun nanofiber for pipette-tip micro solid phase extraction of nitrazepam and oxazepam followed by HPLC analysis


Nanofibers were prepared from a nanocomposite consisting of polyacrylonitrile and a metal-organic framework of type MIL-53(Fe) by electrospinning. They are shown to be a viable sorbent for pipette-tip solid-phase extraction for the extraction of the benzodiazepine drugs nitrazepam and oxazepam. The nanofibers were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The effects of sample pH value and volume, composition, and amount of electrospun nanofibers, the number of adsorption cycles and the type and volume of the eluent were optimized. Following extraction the drugs were quantified by HPLC. Under the optimized conditions, response is linear for both drugs in the 5.0–1000 ng mL−1 concentration range. The limits of detection for oxazepam and nitrazepam are 1.5 and 2.5 ng mL−1, respectively, and the relative standard deviations at the levels of 50, 100 and 250 ng mL−1 (for n = 3) are ≤7.6%. The method was successfully applied for determination of drugs in spiked wastewater and biological fluids.

Schematic representation of polyacrylonitrile/MIL-53(Fe) composite nanofiber synthesis by electrospinning, and the use of them as the sorbent in pipette-tip microsolid-phase extraction (PT–μSPE) for the preconcentration of Nitrazepam and Oxazepam before HPLC–DAD analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Alizadeh R, Salami M, Seidi S (2018) A silica fiber coated with a ZnO-graphene oxide nanocomposite with high specific surface for use in solid phase microextraction of the antiepileptic drugs diazepam and oxazepam. Microchim Acta 185(6):312–320. https://doi.org/10.1007/s00604-018-2850-2

    CAS  Article  Google Scholar 

  2. 2.

    Rust KY, Baumgartner MR, Meggiolaro N, Kraemer T (2012) Detection and validated quantification of 21 benzodiazepines and 3 “z-drugs” in human hair by LC–MS/MS. Forensic Sci Int 215(1–3):64–72. https://doi.org/10.1016/j.forsciint.2011.07.052

    CAS  Article  Google Scholar 

  3. 3.

    Laloup M, Fernandez MMR, Boeck De G, Wood M, Maes V, Samyn N (2005) Validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of 26 benzodiazepines and metabolites, zolpidem and zopiclone, in blood, urine, and hair. J Anal Toxicol 29(7):616–626. https://doi.org/10.1093/jat/29.7.616

    CAS  Article  Google Scholar 

  4. 4.

    Hackett J, Elian AA (2007) Extraction and analysis of clonazepam and 7-aminoclonazepam in whole blood using a dual internal standard methodology. Forensic Sci Int 166(2–3):209–217. https://doi.org/10.1016/j.forsciint.2006.05.040

    CAS  Article  Google Scholar 

  5. 5.

    van der Merwe PJ, Steyn JM (1987) Thin-layer chromatographic method for determination of diazepam and its major metabolite, N-desmethyl diazepam, in human serum. J Chromatogr A 148(2):549–552. https://doi.org/10.1016/S0021-9673(00)85323-6

    Article  Google Scholar 

  6. 6.

    Borrey D, Meyer E, Lambert W, Van Calenbergh S, Van Peteghem C, De Leenheer AP (2001) Sensitive gas chromatographic--mass spectrometric screening of acetylated benzodiazepines. J Chromatogr A 910(1):105–118. https://doi.org/10.1016/S0021-9673(00)01177-8

    CAS  Article  Google Scholar 

  7. 7.

    Verplaetse R, Cuypers E, Tytgat J (2012) The evaluation of the applicability of a high pH mobile phase in ultrahigh performance liquid chromatography tandem mass spectrometry analysis of benzodiazepines and benzodiazepine-like hypnotics in urine and blood. J Chromatogr A 1249:147–154. https://doi.org/10.1016/j.chroma.2012.06.023

    CAS  Article  Google Scholar 

  8. 8.

    McClean S, OKane E, Hillis J, Smyth WF (1999) Determination of 1,4-benzodiazepines and their metabolites by capillary electrophoresis and high-performance liquid chromatography using ultraviolet and electrospray ionisation mass spectrometry. J Chromatogr A 838(1–2):273–291. https://doi.org/10.1016/S0021-9673(99)00236-8

    CAS  Article  Google Scholar 

  9. 9.

    Bagheri H, Manshaei F, Rezvani O (2018) Three-dimensional nanofiber scaffolds are superior to two-dimensional mats in micro-oriented extraction of chlorobenzenes. Microchim Acta 185(7):322. https://doi.org/10.1007/s00604-018-2858-7

    CAS  Article  Google Scholar 

  10. 10.

    Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA (2018) A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185(8):384. https://doi.org/10.1007/s00604-018-2911-6

    CAS  Article  Google Scholar 

  11. 11.

    Kumazawa T, Hasegawa C, Lee X-P (2007) Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J Pharm Biomed Anal 44(2):602–607. https://doi.org/10.1016/j.jpba.2006.12.025

    CAS  Article  Google Scholar 

  12. 12.

    Amiri A, Ghaemi F (2017) Microextraction in packed syringe by using a three-dimensional carbon nanotube/carbon nanofiber–graphene nanostructure coupled to dispersive liquid-liquid microextraction for the determination of phthalate esters in water samples. Microchim Acta 184(10):3851–3858. https://doi.org/10.1007/s00604-017-2416-8

    CAS  Article  Google Scholar 

  13. 13.

    Rezayat MR, Jafari MT, Rahmanian F (2018) Thin film nanofibers containing ZnTiO3 nanoparticles for rapid evaporation of extraction solvent: application to the preconcentration of chlorpyrifos prior to its quantification by ion mobility spectrometry. Microchim Acta 186(1):35. https://doi.org/10.1007/s00604-018-3167-x

    CAS  Article  Google Scholar 

  14. 14.

    Tannu NS, Wu J, Rao VK, Gadgil HS, Pabst MJ, Gerling IC, Raghow R (2004) Paraffin-wax-coated plates as matrix-assisted laser desorption/ionization sample support for high-throughput identification of proteins by peptide mass fingerprinting. Anal Biochem 327(2):222–232. https://doi.org/10.1016/j.ab.2004.01.033

    CAS  Article  Google Scholar 

  15. 15.

    Hsieh HC, Sheu C, Shi FK, Li DT (2007) Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. J Chromatogr A 1165(1–2):128–135. https://doi.org/10.1016/j.chroma.2007.08.012

    CAS  Article  Google Scholar 

  16. 16.

    Bagheri H, Aghakhani A (2012) Polyaniline-nylon6 electrospun nanofibers for head spacead sorptive microextraction. Anal Chim Acta 713:63–69. https://doi.org/10.1016/j.aca.2011.11.027

    CAS  Article  Google Scholar 

  17. 17.

    Stankusa JJ, Guan J, Fujimotoc K, Wagner WR (2006) Microintegrating smooth muscle cells into a biodegradable, elastomeric fiber matrix. Biomaterials 27(5):735–744. https://doi.org/10.1016/j.biomaterials.2005.06.020

    CAS  Article  Google Scholar 

  18. 18.

    Wang X, Hsiao BS (2016) Electrospun nanofiber membranes. Curr Opin Chem Eng 12:62–81. https://doi.org/10.1016/j.coche.2016.03.001

    Article  Google Scholar 

  19. 19.

    Ren J, Musyoka NM, Annamalai P, Langmi HW, North BC, Mathe M (2015) Electrospun MOF nanofibers as hydrogen storage media. Int J Hydrog Energy 40(30):9382–9387. https://doi.org/10.1016/j.ijhydene.2015.05.088

    CAS  Article  Google Scholar 

  20. 20.

    Koo WT, Choi SJ, Kim S-J, Jang J-S, Tuller HL, Kim ID (2016) Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on oxide nanofiber scaffold toward superior gas sensors. J Am Chem Soc 138(40):13431–13437. https://doi.org/10.1021/jacs.6b09167

    CAS  Article  Google Scholar 

  21. 21.

    Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM (2013) The chemistry and applications of metal-organic frameworks. Science 341(6149):1230444–1230456. https://doi.org/10.1126/science.1230444

    CAS  Article  Google Scholar 

  22. 22.

    Gu Z-Y, Chen Y-J, Jiang J-Q, Yan X-P (2011) Metal–organic frameworks for efficient enrichment of peptides with simultaneous exclusion of proteins from complex biological samples. Chem Commun 47(16):4787–4789. https://doi.org/10.1039/C1CC10579E

    CAS  Article  Google Scholar 

  23. 23.

    Ge D, Lee HK (2011) Water stability of zeolite imidazolate framework 8 and application to porous membrane-protected micro-solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. J Chromatogr A 1218(47):8490–8495. https://doi.org/10.1016/j.chroma.2011.09.077

    CAS  Article  Google Scholar 

  24. 24.

    Férey G, Mellot-Draznieks C, Serre C, Millange F (2005) Crystallize frameworks with Giant pores: are there limits to the possible? Cheminform 36(29):217–225. https://doi.org/10.1002/chin.200529227

    Article  Google Scholar 

  25. 25.

    Asiabi M, Mehdinia A, Jabbaria A (2015) Preparation of water stable methyl-modified metal–organicframework-5/polyacrylonitrile composite nanofibers viaelectrospinning and their application for solid-phase extraction oftwo estrogenic drugs in urine samples. J Chromatogr A 1426:24–32. https://doi.org/10.1016/j.chroma.2015.11.036

    CAS  Article  Google Scholar 

  26. 26.

    Yang Z, Xu X, Liang X, Lei C, Wei Y, He P, Lv B, Ma H, Lei Z (2016) MIL-53(Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols. Appl Catal B 198:112–123. https://doi.org/10.1016/j.apcatb.2016.05.041

    CAS  Article  Google Scholar 

  27. 27.

    Gu Z-Y, Yang C-X, Chang N, Yan X-P (2012) Metal–organic frameworks foranalytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45:734–745. https://doi.org/10.1021/ar2002599

    CAS  Article  Google Scholar 

  28. 28.

    Gao Y, Lia S, Lia Y, Yao L, Zhanga H (2016) Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl Catal B Environ 202:165–174. https://doi.org/10.1016/j.apcatb.2016.09.005

    CAS  Article  Google Scholar 

  29. 29.

    Liang R, Jing F, Shen L, Qin N, Wu L (2015) MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J Hazard Mater 287:364–372. https://doi.org/10.1016/j.jhazmat.2015.01.048

    CAS  Article  Google Scholar 

  30. 30.

    Bairros AV, Menck de Almeida R, Pantaleão L, Barcellosc T, Moura e Silva S, Yonamine M (2015) Determination of low levels of benzodiazepines and their metabolitesin urine by hollow-fiber liquid-phase microextraction (LPME) and gas chromatography–mass spectrometry (GC–MS). J Chromatogr B 975:24–33. https://doi.org/10.1016/j.jchromb.2014.10.040

    CAS  Article  Google Scholar 

  31. 31.

    Goudarzi N, Farsimadan S, Chamjangali MA, Bagherian GA (2015) Optimization of modified dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography for the simultaneous preconcentration and determination of nitrazepam and midazolam drugs: an experimental design. J Sep Sci 38(10):1673–1679. https://doi.org/10.1002/jssc.201500007

    CAS  Article  Google Scholar 

  32. 32.

    Vardini MT, Mashayekhi HA, Saber-Tehrani M (2012) Dipersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for the simultaneous determination of alprazolam, oxazepam, and diazepam in human urine samples. J Liq Chromatogr Relat Technol 35(7):988–999. https://doi.org/10.1080/10826076.2011.637277

    CAS  Article  Google Scholar 

  33. 33.

    Fisichella M, Odoardi S, Strano-Rossi S (2015) High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography- tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem J 123:33–41. https://doi.org/10.1016/j.microc.2015.05.009

    CAS  Article  Google Scholar 

  34. 34.

    He H, Sun C, Wang X-R (2005) Solid-phase extraction of methadone enantiomers and benzodiazepines in biological fluids by two polymeric cartridges for liquid chromatographic analysis. J Chromatogr B 814(2):385–391. https://doi.org/10.1016/j.jchromb.2004.10.048

    CAS  Article  Google Scholar 

  35. 35.

    Hegstad S, Oiestad EI, Johansen U, Christophersen AS (2006) Determination of benzodiazepines in human urine using solid-phase extraction and high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Anal Toxicol 30(1):31–37. https://doi.org/10.1093/jat/30.1.31

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Homeira Ebrahimzadeh.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 717 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amini, S., Ebrahimzadeh, H., Seidi, S. et al. Polyacrylonitrile/MIL-53(Fe) electrospun nanofiber for pipette-tip micro solid phase extraction of nitrazepam and oxazepam followed by HPLC analysis. Microchim Acta 187, 152 (2020). https://doi.org/10.1007/s00604-020-4112-3

Download citation


  • Composite nanosorbent
  • Miniaturization
  • Metal organic framework
  • Sample preparation
  • Microextraction
  • Benzodiazepines
  • Biological fluid
  • Waste water analysis