Skip to main content
Log in

An enzyme-free probe based on G-triplex assisted by silver nanocluster pairs for sensitive detection of microRNA-21

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive ratiometric fluorescence probe based on hybridization chain reaction (HCR) was constructed for sensitive detection of miRNA-21 by using G-triplex and silver nanocluster pairs (AgNC pairs) as an enzyme-free and label-free signal output group. miRNA-21 was used as the primer for the hybridization chain reaction of molecular beacon 1 (MB1) containing the locked G-triplex sequence and molecular beacon 2 (MB2) with intact AgNC pairs at the 5′ and 3′ end activation. The double-stranded product was obtained along with the opening of the G-triplex and the separation of the AgNC pairs. A detection limit of 67 pM and a linear detection range of 0.1–300 nM were obtained for miRNA-21 determination. The proposed strategy enabled the monitoring of miRNA-21 levels in at least three cell lines, indicating that it provided new ideas for detecting miRNA in real samples.

Graphical abstract

MB1 and MB2 contained the locked G-triplex sequence and silver nanocluster pairs (AgNC pairs), respectively. In the presence of target, the hybridization chain reaction (HCR) between MB1 and MB2 was initiated. At the same time, the locked G-triplex was released and combined to the dye thioflavin T (THT) to increase fluorescence, while the separation of the AgNC pairs caused the fluorescence to decrease. The double-stranded (ds) DNA product was generated to form a ratiometric signal to be detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18:997–1006. https://doi.org/10.1038/cr.2008.282

    Article  CAS  PubMed  Google Scholar 

  2. Cissell KA, Shrestha S, Deo SK (2007) MicroRNA detection: challenges for the analytical chemist. Anal Chem 79:4754–4761. https://doi.org/10.1021/ac0719305

    Article  CAS  Google Scholar 

  3. Li R, Liu Q, Jin Y, Li B (2019) G-triplex/hemin DNAzyme: an ideal signal generator for isothermal exponential amplification reaction-based biosensing platform. Anal Chim Acta 1079:139–145. https://doi.org/10.1016/j.aca.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  4. Wang S, Fu B, Wang J, Long Y, Zhang X, Peng S, Guo P, Tian T, Zhou X (2014) Novel amplex red oxidases based on noncanonical DNA structures: property studies and applications in microRNA detection. Anal Chem 86:2925–2930. https://doi.org/10.1021/ac402535a

    Article  CAS  PubMed  Google Scholar 

  5. Lu X, Li H, You J, Li W, Wang P, Li M, Dou S, Xi X (2018) Folding dynamics of parallel and anti-parallel G-triplex under the influence of proximal DNA. J Physl Chem B 122:9499–9506. https://doi.org/10.1021/acs.jpcb.8b08110

    Article  CAS  Google Scholar 

  6. Li R, Liu Q, Jin Y, Li B (2020) Sensitive colorimetric determination of microRNA let-7a through rolling circle amplification and a peroxidase-mimicking system composed of trimeric G-triplex and hemin DNAzyme. Microchim Acta 187:139. https://doi.org/10.1007/s00604-019-4093-2

    Article  CAS  Google Scholar 

  7. Linda C, Jussara A, Andrea G, Vittorio L, Ettore N, Michele P, Marco F, Antonio R, Claudio L (2014) G-triplex structure and formation propensity. Nucleic Acids Res 42:13393–13404. https://doi.org/10.1093/nar/gku1084

    Article  CAS  Google Scholar 

  8. Frieg B, Gremer L, Heise H, Willbold D, Gohlke H (2020) Binding modes of thioflavin T and Congo red to the fibril structure of amyloid-β(1-42). Chem Commun 56:7589–7592. https://doi.org/10.1039/d0cc01161d

    Article  CAS  Google Scholar 

  9. Zhou H, Wu ZF, Han QJ, Zhong HM, Peng JB, Li X, Fan XL (2018) Stable and label-free fluorescent probe based on G-triplex DNA and thioflavin T. Anal Chem 90:3220–3226. https://doi.org/10.1021/acs.analchem.7b04666

    Article  CAS  PubMed  Google Scholar 

  10. Guo R, Chen B, Li F, Weng S, Zheng Z, Chen M, Wu W, Lin X, Yang C (2018) Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sens Actuator B Chem 264:193–201. https://doi.org/10.1016/j.snb.2018.02.175

    Article  CAS  Google Scholar 

  11. Guo Y, Chen Q, Qi Y, Xie Y, Qian H, Yao W, Pei R (2017) Label-free ratiometric DNA detection using two kinds of interaction responsive emission dyes. Biosens Bioelectron 87:320–324. https://doi.org/10.1016/j.bios.2016.08.041

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Guo S, Jiang Z, Mao G, Ji X, He Z (2018) Rox-DNA functionalized silicon nanodots for ratiometric detection of mercury ions in live cells. Anal Chem 90:9796–9804. https://doi.org/10.1002/adfm.201704092

    Article  CAS  PubMed  Google Scholar 

  13. Chen X, Xu K, Li J, Yang M, Li X, Chen Q, Lu C, Yang H (2020) Switch-conversional ratiometric fluorescence biosensor for miRNA detection. Biosens Bioelectron 155:112104–112109. https://doi.org/10.1016/j.bios.2020.112104

    Article  CAS  PubMed  Google Scholar 

  14. Ma L, Han X, Xia L, Kong R, Qu F (2018) G-triplex based molecular beacon for label-free fluorescence “turn-on” detection of bleomycin. Analyst 143:5474–5480. https://doi.org/10.1039/c8an01208c

    Article  CAS  PubMed  Google Scholar 

  15. Wu Z, Zhou H, He J, Li M, Ma X, Xue J, Li X, Fan X (2019) G-triplex based molecular beacon with duplex-specific nuclease amplification for specific detection of microRNA. Analyst 144:5201–5206. https://doi.org/10.1039/c9an01075k

    Article  CAS  PubMed  Google Scholar 

  16. Que H, Yan X, Guo B, Ma H, Wang T, Liu P, Gan X, Yan Y (2019) Terminal deoxynucleotidyl transferase and rolling circle amplification induced G-triplex formation: a label-free fluorescent strategy for DNA methyltransferase activity assay. Sens Actuators B chem 291:394–400. https://doi.org/10.1016/j.snb.2019.04.091

    Article  CAS  Google Scholar 

  17. Wang K, He M, Zhai F, He R, Yu Y (2017) A label-free and enzyme-free ratiometric fluorescence biosensor for sensitive detection of carcinoembryonic antigen based on target-aptamer complex recycling amplification. Sens Actuators B Chem. 253:893–899. https://doi.org/10.1016/j.snb.2017.07.047

    Article  CAS  Google Scholar 

  18. Ma J, Yin B, Ye B (2015) DNA template-regulated intergrowth of a fluorescent silver nanocluster emitter pair. RSC Adv 119:98467–98471. https://doi.org/10.1039/c5ra21159j

    Article  Google Scholar 

  19. Yin B, Ma J, Le H, Wang S, Xu Z, Ye B (2019) A new mode to light up an adjacent DNA-scaffolded silver probe pair and its application for specific DNA detection. Chem Commun 100:15991–15994. https://doi.org/10.1039/c4cc07209j

    Article  Google Scholar 

  20. Zhang M, Gao G, Ding Y, Deng C, Xiang J, Wu H (2019) A fluorescent aptasensor for the femtomolar detection of epidermal growth factor receptor-2 based on the proximity of G-rich sequences to Ag nanoclusters. Talanta 199:238–243. https://doi.org/10.1016/j.talanta.2019.02.014

    Article  CAS  PubMed  Google Scholar 

  21. Wang J, Zhang Z, Gao X, Lin X, Liu Y, Wang S (2019) A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection. Sens Actuators B Chem 282:712–718. https://doi.org/10.1016/j.snb.2018.11.121

    Article  CAS  Google Scholar 

  22. Liu J, Lu Y, Feng L, Wang S, Zhang S, Zhu X, Sheng L, Zhang S, Zhang X (2017) Pinpoint the positions of single nucleotide polymorphisms by a nanocluster dimer. Anal Chem 89:2622–2627. https://doi.org/10.1021/acs.analchem.6b04981

    Article  CAS  PubMed  Google Scholar 

  23. Zhou W, Zhu J, Fan D, Teng Y, Zhu X, Dong S (2017) A multicolor chameleon DNA-templated silver nanocluster and its application for ratiometric fluorescence target detection with exponential signal response. Adv Funct Mater 27:1704092. https://doi.org/10.1002/adfm.201704092

    Article  CAS  Google Scholar 

  24. Jiang H, Cui Y, Zhao T, Fu H, Koirala D, Punnoose JA, Kong D, Mao H (2015) Divalent cations and molecular crowding buffers stabilize G-triplex at physiologically relevant temperatures. Sci Rep 5:9255–9255. https://doi.org/10.1038/srep09255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajendran A, Endo M, Hidaka K, Teulade-Fichou MP, Mergny J, Sugiyama H (2015) Small molecule binding to a G-hairpin and a G-triplex: a new insight into anticancer drug design targeting G-rich regions. Chem Commun 44:9181–9184. https://doi.org/10.1039/c5cc01678a

    Article  Google Scholar 

  26. Zhao L, Cao T, Zhou Q, Zhang X, Zhou Y, Yang L, Zhang X (2019) The exploration of a new stable G-triplex DNA and its novel function in electrochemical biosensing. Anal Chem 91:10731–10737. https://doi.org/10.1021/acs.analchem.9b02161

    Article  CAS  PubMed  Google Scholar 

  27. Liu Q, Sun X, Liu M, Jin Y, Li B (2020) G-triplex molecular beacon-based fluorescence biosensor for sensitive detection of small molecule-protein interaction via exonuclease III-assisted recycling amplification. Sens Actuators B Chem. 310:127804. https://doi.org/10.1016/j.snb.2020.127804

    Article  CAS  Google Scholar 

  28. Wang Y, Wu Z, Liu Z (2013) Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor. Anal Chem 85:258–264. https://doi.org/10.1021/ac302659b

    Article  CAS  PubMed  Google Scholar 

  29. Xu S, Nie Y, Jing L, Wang J, Xu G, Wang W, Luo X (2018) Polydopamine nanosphere/gold nanocluster (Au NC)-based nanoplatform for dual color simultaneous detection of multiple tumor-related microRNAs with DNase-I-assisted target recycling amplification. Anal Chem 90:4039–4045. https://doi.org/10.1021/acs.analchem.7b05253

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Zhang C (2011) Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. Anal Chem 84:224–231. https://doi.org/10.1021/ac202405q

    Article  CAS  PubMed  Google Scholar 

  31. Selcuklu SD, Donoghue MT, Spillane C (2009) MiR-21 as a key regulator of oncogenic processes. Biochem Soc Trans 37:918–925. https://doi.org/10.1042/bst0370918

    Article  CAS  PubMed  Google Scholar 

  32. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) MiR-21-mediated tumor growth. Oncogene 26:2799–2803. https://doi.org/10.1038/sj.onc.1210083

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21775132), the Natural Science Foundation of Hunan Province (No.2018JJ2388), Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization, the project of innovation team of the Ministry of Education (IRT_17R90), and “1515” academic leader team program of Hunan Agricultural University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyan Chen or Changqun Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 191 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, S., Zou, R. et al. An enzyme-free probe based on G-triplex assisted by silver nanocluster pairs for sensitive detection of microRNA-21. Microchim Acta 188, 55 (2021). https://doi.org/10.1007/s00604-020-04680-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04680-2

Keywords

Navigation