Synthesis of carbon quantum dots with iron and nitrogen from Passiflora edulis and their peroxidase-mimicking activity for colorimetric determination of uric acid

Abstract

Carbon quantum dots co-doped with iron and nitrogen (Fe@NCDs) were synthesized by using Passiflora edulis Sims (P. edulis) as a precursor. The Fe@NCDs exhibit outstanding peroxidase-mimetic activity owing to successful doping with iron resulting in a behavior similar to that of iron porphyrins. In the presence of H2O2, the Fe@NCDs catalyze the oxidation of the peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) with a color change from colorless to blue. The blue oxidation product has a characteristic absorption peaking at 652 nm. A colorimetric assay was worked out for uric acid (UA) that measures the hydrogen peroxide produced during oxidation of UA by uricase. Response is linear in the 2–150 μM UA concentration range, and the limit of detection is 0.64 μM. The method was applied to the determination of UA in (spiked) urine, and recoveries ranged from 92.0 to 103.4%.

Schematic representation of the fabrication of iron and nitrogen co-doped carbon dots (Fe@NCDs) using Passiflora edulis Sims as carbon-based materials. First, uric acid (UA) was oxidized to generate H2O2 by uricase. Then, the Fe@NCDs catalyzed the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to form blue-colored oxidized TMB (oxTMB) in the presence of H2O2. UA can be quantified based on the theory.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Matsoso BJ, Mutuma BK, Billing C, Ranganathan K, Lerotholi T, Jones G, Coville NJ (2019) Investigating the electrochemical behaviour and detection of uric acid on ITO electrodes modified with differently doped N-graphene films. J Electroanal Chem 833:160–168. https://doi.org/10.1016/j.jelechem.2018.11.040

    CAS  Article  Google Scholar 

  2. 2.

    Wang H, Lu Q, Hou Y, Liu Y, Zhang Y (2016) High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 155:62–69. https://doi.org/10.1016/j.talanta.2016.04.020

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, Ariffin N, Yusof NA (2015) A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens Bioelectron 67:129–133. https://doi.org/10.1016/j.bios.2014.07.056

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Grassi D, Ferri L, Desideri G, Giosia PD, Cheli P, Pinto RD, Properzi G, Ferri C (2013) Chronic hyperuricemia, uric acid deposit and cardiovascular risk. Curr Pharm Des 19:2432–2438. https://doi.org/10.2174/1381612811319130011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Saqib M, Qi L, Hui P, Nsabimana A, Halawa MI, Zhang W, Xu G (2018) Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co(II). Biosens Bioelectron 99:519–524. https://doi.org/10.1016/j.bios.2017.08.028

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wang X, Yao Q, Tang X, Zhong H, Qiu P, Wang X (2019) A highly selective and sensitive colorimetric detection of uric acid in human serum based on MoS2-catalyzed oxidation TMB. Anal Bioanal Chem 411(4):943–952. https://doi.org/10.1007/s00216-018-1524-6

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Abbas MW, Soomro RA, Kalwar NH, Zahoor M, Avci A, Pehlivan E, Hallam KR, Willander M (2019) Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchem J 146:517–524. https://doi.org/10.1016/j.microc.2019.01.034

    CAS  Article  Google Scholar 

  8. 8.

    Kong RM, Yang A, Wang Q, Wang Y, Ma L, Qu F (2017) Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim Acta 185(1):63. https://doi.org/10.1007/s00604-017-2614-4

    CAS  Article  Google Scholar 

  9. 9.

    Zhao M, Zhou MF, Feng H, Cong XX, Wang XL (2016) Determination of tryptophan, glutathione, and uric acid in human whole blood extract by capillary electrophoresis with a one-step electrochemically reduced graphene oxide modified microelectrode. Chromatographia 79(13–14):911–918. https://doi.org/10.1007/s10337-016-3115-z

    CAS  Article  Google Scholar 

  10. 10.

    Remane D, Grunwald S, Hoeke H, Mueller A, Roeder S, von Bergen M, Wissenbach DK (2015) Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine. J Chromatogr B Anal Technol Biomed Life Sci 998-999:40–44. https://doi.org/10.1016/j.jchromb.2015.06.021

    CAS  Article  Google Scholar 

  11. 11.

    Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51(61):12251–12253. https://doi.org/10.1039/c5cc04231c

    CAS  Article  Google Scholar 

  12. 12.

    Zhong Q, Chen Y, Qin X, Wang Y, Yuan C, Xu Y (2019) Colorimetric enzymatic determination of glucose based on etching of gold nanorods by iodine and using carbon quantum dots as peroxidase mimics. Microchim Acta 186(3):161. https://doi.org/10.1007/s00604-019-3291-2

    CAS  Article  Google Scholar 

  13. 13.

    Sui N, Li S, Wang Y, Zhang Q, Liu S, Bai Q, Xiao H, Liu M, Wang L, Yu WW (2019) Etched PtCu nanowires as a peroxidase mimic for colorimetric determination of hydrogen peroxide. Microchim Acta 186(3):186. https://doi.org/10.1007/s00604-019-3293-0

    CAS  Article  Google Scholar 

  14. 14.

    Chandra S, Singh VK, Yadav PK, Bano D, Kumar V, Pandey VK, Talat M, Hasan SH (2019) Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal Chim Acta 1054:145–156. https://doi.org/10.1016/j.aca.2018.12.024

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ding Y, Yang B, Liu H, Liu Z, Zhang X, Zheng X, Liu Q (2018) FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem 259:775–783. https://doi.org/10.1016/j.snb.2017.12.115

    CAS  Article  Google Scholar 

  16. 16.

    Hosseini M, Sadat Sabet F, Khabbaz H, Aghazadeh M, Mizani F, Ganjali MR (2017) Enhancement of the peroxidase-like activity of cerium-doped ferrite nanoparticles for colorimetric detection of H2O2 and glucose. Anal Methods 9(23):3519–3524. https://doi.org/10.1039/c7ay00750g

    CAS  Article  Google Scholar 

  17. 17.

    Zhu D, Zhuo S, Zhu C, Zhang P, Shen W (2019) Synthesis of catalytically active peroxidase-like Fe-doped carbon dots and application in ratiometric fluorescence detection of hydrogen peroxide and glucose. Anal Methods 11(20):2663–2668. https://doi.org/10.1039/c9ay00342h

    CAS  Article  Google Scholar 

  18. 18.

    Lu J, Xiong Y, Liao C, Ye F (2015) Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53(Fe). Anal Methods 7(23):9894–9899. https://doi.org/10.1039/c5ay02240a

    CAS  Article  Google Scholar 

  19. 19.

    Ding C, Yan Y, Xiang D, Zhang C, Xian Y (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631. https://doi.org/10.1007/s00604-015-1690-6

    CAS  Article  Google Scholar 

  20. 20.

    Lin L, Xiao Y, Wang Y, Zeng Y, Lin Z, Chen X (2019) Hydrothermal synthesis of nitrogen and copper co-doped carbon dots with intrinsic peroxidase-like activity for colorimetric discrimination of phenylenediamine isomers. Microchim Acta 186(5):288. https://doi.org/10.1007/s00604-019-3404-y

    CAS  Article  Google Scholar 

  21. 21.

    Gao W, Song H, Wang X, Liu X, Pang X, Zhou Y, Gao B, Peng X (2018) Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Appl Mater Interfaces 10(1):1147–1154. https://doi.org/10.1021/acsami.7b16991

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Li C, Wang Y, Zhang X, Guo X, Kang X, Du L, Liu Y (2018) Red fluorescent carbon dots with phenylboronic acid tags for quick detection of Fe(III) in PC12 cells. J Colloid Interface Sci 526:487–496. https://doi.org/10.1016/j.jcis.2018.05.017

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Bano D, Kumar V, Chandra S, Singh VK, Mohan S, Singh DK, Talat M, Hasan SH (2019) Synthesis of highly fluorescent nitrogen-rich carbon quantum dots and their application for the turn-off detection of cobalt (II). Opt Mater 92:311–318. https://doi.org/10.1016/j.optmat.2019.04.045

    CAS  Article  Google Scholar 

  24. 24.

    Gong P, Sun L, Wang F, Liu X, Yan Z, Wang M, Zhang L, Tian Z, Liu Z, You J (2019) Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J 356:994–1002. https://doi.org/10.1016/j.cej.2018.09.100

    CAS  Article  Google Scholar 

  25. 25.

    Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q (2019) Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 383:82–103. https://doi.org/10.1016/j.ccr.2019.01.004

    CAS  Article  Google Scholar 

  26. 26.

    Molaei MJ (2019) A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 196:456–478. https://doi.org/10.1016/j.talanta.2018.12.042

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Shi W, Wang Q, Long Y, Cheng Z, Chen S, Zheng H, Huang Y (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697. https://doi.org/10.1039/c1cc11943e

    CAS  Article  Google Scholar 

  28. 28.

    Singh VK, Yadav PK, Chandra S, Bano D, Talat M, Hasan SH (2018) Peroxidase mimetic activity of fluorescent NS-carbon quantum dots and their application in colorimetric detection of H2O2 and glutathione in human blood serum. J Mater Chem B 6(32):5256–5268. https://doi.org/10.1039/c8tb01286e

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Tang M, Zhu B, Wang Y, Wu H, Chai F, Qu F, Su Z (2019) Nitrogen- and sulfur-doped carbon dots as peroxidase mimetics: colorimetric determination of hydrogen peroxide and glutathione, and fluorimetric determination of lead(II). Microchim Acta 186(9):604. https://doi.org/10.1007/s00604-019-3710-4

    CAS  Article  Google Scholar 

  30. 30.

    Wang J, Qiu F, Li X, Wu H, Xu J, Niu X, Pan J, Zhang T, Yang D (2017) A facile one-pot synthesis of fluorescent carbon dots from degrease cotton for the selective determination of chromium ions in water and soil samples. J Lumin 188:230–237. https://doi.org/10.1016/j.jlumin.2017.04.035

    CAS  Article  Google Scholar 

  31. 31.

    Wang B, Liu F, Wu Y, Chen Y, Weng B, Li CM (2018) Synthesis of catalytically active multielement-doped carbon dots and application for colorimetric detection of glucose. Sensors Actuators B Chem 255:2601–2607. https://doi.org/10.1016/j.snb.2017.09.067

    CAS  Article  Google Scholar 

  32. 32.

    Bano D, Kumar V, Singh VK, Chandra S, Singh DK, Yadav PK, Talat M, Hasan SH (2018) A facile and simple strategy for the synthesis of label free carbon quantum dots from the latex of Euphorbia milii and its peroxidase-mimic activity for the naked eye detection of glutathione in a human blood serum. ACS Sustain Chem Eng 7(2):1923–1932. https://doi.org/10.1021/acssuschemeng.8b04067

    CAS  Article  Google Scholar 

  33. 33.

    Ding H, Zhou X, Qin B, Zhou Z, Zhao Y (2019) Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. J Lumin 211:298–304. https://doi.org/10.1016/j.jlumin.2019.03.064

    CAS  Article  Google Scholar 

  34. 34.

    Feng S, Gao Z, Liu H, Huang J, Li X, Yang Y (2019) Feasibility of detection valence speciation of Cr(III) and Cr(VI) in environmental samples by spectrofluorimetric method with fluorescent carbon quantum dots. Spectrochim Acta A Mol Biomol Spectrosc 212:286–292. https://doi.org/10.1016/j.saa.2018.12.055

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Liu T, Li N, Dong JX, Luo HQ, Li NB (2016) Fluorescence detection of mercury ions and cysteine based on magnesium and nitrogen co-doped carbon quantum dots and IMPLICATION logic gate operation. Sensors Actuators B Chem 231:147–153. https://doi.org/10.1016/j.snb.2016.02.141

    CAS  Article  Google Scholar 

  36. 36.

    Yang W, Huang T, Zhao M, Luo F, Weng W, Wei Q, Lin Z, Chen G (2017) High peroxidase-like activity of iron and nitrogen co-doped carbon dots and its application in immunosorbent assay. Talanta 164:1–6. https://doi.org/10.1016/j.talanta.2016.10.099

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Gao Y, Jiao Y, Lu W, Liu Y, Han H, Gong X, Xian M, Shuang S, Dong C (2018) Carbon dots with red emission as a fluorescent and colorimeteric dual-readout probe for the detection of chromium(vi) and cysteine and its logic gate operation. J Mater Chem B 6(38):6099–6107. https://doi.org/10.1039/c8tb01580e

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Liang Q, Wang Y, Lin F, Jiang M, Li P, Huang B (2017) A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application. Anal Methods 9(24):3675–3681. https://doi.org/10.1039/c7ay01069a

    CAS  Article  Google Scholar 

  39. 39.

    Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C (2017) An “on-off-on” fluorescent nanoprobe for recognition of chromium(VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta 968:85–96. https://doi.org/10.1016/j.aca.2017.02.038

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Hu Q, Gao L, Rao S, Yang Z, Li T, Gong X (2019) Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chem 280:195–202. https://doi.org/10.1016/j.foodchem.2018.12.050

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Numnuam A, Thavarungkul P, Kanatharana P (2014) An amperometric uric acid biosensor based on chitosan-carbon nanotubes electrospun nanofiber on silver nanoparticles. Anal Bioanal Chem 406:3763–3772. https://doi.org/10.1007/s00216-014-7770-3

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Shete MD, Fernandes JB (2015) A simple one step solid state synthesis of nanocrystalline ferromagnetic α-Fe2O3 with high surface area and catalytic activity. Mater Chem Phys 165:113–118. https://doi.org/10.1016/j.matchemphys.2015.09.004

    CAS  Article  Google Scholar 

  43. 43.

    Gu T, Zou W, Gong F, Xia J, Chen C, Chen X (2018) A specific nanoprobe for cysteine based on nitrogen-rich fluorescent quantum dots combined with Cu2+. Biosens Bioelectron 100:79–84. https://doi.org/10.1016/j.bios.2017.08.031

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Wang B, Chen Y, Wu Y, Weng B, Liu Y, Li CM (2016) Synthesis of nitrogen and iron-containing carbon dots, and their application to colorimetric and fluorometric determination of dopamine. Microchim Acta 183(9):2491–2500. https://doi.org/10.1007/s00604-016-1885-5

    CAS  Article  Google Scholar 

  45. 45.

    Jin D, Seo MH, Huy BT, Pham QT, Conte ML, Thangadurai D, Lee YI (2016) Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 77:359–365. https://doi.org/10.1016/j.bios.2015.09.057

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Amjadi M, Hallaj T, Kouhi Z (2018) An enzyme-free fluorescent probe based on carbon dots – MnO2 nanosheets for determination of uric acid. J Photochem Photobiol A Chem 356:603–609. https://doi.org/10.1016/j.jphotochem.2018.02.002

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 61664002) and Guangxi major science and technology projects (AA18242011-2).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuwei Lan or Liya Zhou.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5311 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Lan, Y., Sun, Z. et al. Synthesis of carbon quantum dots with iron and nitrogen from Passiflora edulis and their peroxidase-mimicking activity for colorimetric determination of uric acid. Microchim Acta 187, 405 (2020). https://doi.org/10.1007/s00604-020-04391-8

Download citation

Keywords

  • Passiflora edulis Sims
  • Carbon quantum dots
  • Fe@NCDs
  • Hydrothermal synthesis
  • Peroxidase mimics
  • 3,3′,5,5′-tetramethylbenzidine
  • Uric acid
  • Colorimetric assay
  • Visual detection
  • Urine analysis