Skip to main content
Log in

Luminescent europium(III)-organic framework for visual and on-site detection of hydrogen peroxide via a tablet computer

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A luminescent metal-organic framework of type Eu(III)-MOF has been fabricated for visual and on-site fluorometric determination of hydrogen peroxide (H2O2) via a tablet computer. The maximum excitation and emission peaks of type Eu(III)-MOF were found at λex = 290 nm and λem = 615 nm, respectively. The average length of Eu-MOF is 1.21 ± 0.07 μm. In the presence of the target H2O2, Fe2+ is transmitted into Fe3+ via Fenton reaction, leading to a fluorescence quenching of Eu-MOF. Therefore, visible color change occurred from bright red into colorless. Interestingly, by means of tablet computer’s digital camera and ImageJ software, fluorescent signals were captured and transduced into digital parameters, resulting in a linear relationship between fluorescence intensity and the concentration of H2O2. As a result, the determination of H2O2 without the aid of complicated instruments is achieved in the range 2.0 μM to 0.2 mM with a detection limit of 1.02 μM. Our approach has been successfully applied to quantify H2O2 in serum, urine, and waste water with good recovery and precision (< 2.5% RSD). Besides, our assay has been exploited for visual detection of H2O2 released from HepG2 cells with the advantages of portability and accuracy. Moreover, the strategy displays acceptable selectivity and stability. Hence, our assay provides an alternative practical method for on-site determination of H2O2 without the need for instruments.

Schematic representation of the synthesis procedure of a luminescent Eu-MOF, which has been successfully applied for on-site detection of H2O2 via Fenton reaction and imaging analysis technique. The method exhibits handheld and accuracy for H2O2 determination, holding the potential for biochemical and clinical applications in remote regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lee ES, Deepagan VG, You DG, Jeon J, Yi GR, Lee JY, Lee DS, Suh YD, Park JH (2016) Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer. Chem Commun 52:4132–4135. https://doi.org/10.1039/C5CC09850E

    Article  CAS  Google Scholar 

  2. Shiraishi Y, Takii T, Hagi T, Mori S, Kofuji Y, Kitagawa Y, Tanaka S, Ichikawa S, Hirai T (2019) Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat Mater 18:985–993. https://doi.org/10.1038/s41563-019-0398-0

    Article  CAS  PubMed  Google Scholar 

  3. Møretrø T, Fanebust H, Fagerlund A, Langsrud S (2019) Whole room disinfection with hydrogen peroxide mist to control listeria monocytogenes in food industry related environments. Int J Food Microbiol 292:118–125. https://doi.org/10.1016/j.ijfoodmicro.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  4. Elsebai B, Ghica ME, Abbas MN, Brett MAC (2017) Catalase based hydrogen peroxide biosensor for mercury determination by inhibition measurements. J Hazard Mater 340:344–350. https://doi.org/10.1016/j.jhazmat.2017.07.021

    Article  CAS  PubMed  Google Scholar 

  5. Dagnell M, Cheng Q, Pace PE, Hampton MB, Winterbourn CC, Arnér ESJ (2018) Bicarbonate is required for hydrogen peroxide-dependent inactivation of PTP1B in presence of the Trx system and peroxiredoxin. Free Radic Biol Med 120:S36. https://doi.org/10.1016/j.freeradbiomed.2018.04.123

    Article  Google Scholar 

  6. Ortiz-Capisano MC, Maskey D, Mendez M (2019) Enhanced hydrogen peroxide-dependent renin and pro-renin release in juxtaglomerular cells from diabetic mice: role of NOX1. Hypertension 74:A141. https://doi.org/10.1161/hyp.74.suppl_1.141

    Article  Google Scholar 

  7. Montiel V, Esfahani H, Mulder DD, Deglasse JP, Jonas JC, Steinhorn B, Michel T, Devuyst O, Balligand JL (2018) Cardiac aquaporin-1 mediates transmembrane transport of hydrogen peroxide and modulates myocardial fibrosis and hypertrophic remodeling. Cardiovasc Res 114:S1. https://doi.org/10.1093/cvr/cvy060.015

    Article  Google Scholar 

  8. Chang HB, Heatha JM, Yb C (2016) Redox signaling in cardiovascular pathophysiology: a focus on hydrogen peroxide and vascular smooth muscle cells. Redox Biol 9:244–253. https://doi.org/10.1016/j.redox.2016.08.015

    Article  CAS  Google Scholar 

  9. Hamulakova S, Poprac P, Jomova K, Brezova V, Lauro P, Drostinova L, Jun D, Sepsova V, Hrabinova M, Soukup O, Kristian P, Gazova Z, Bednarikova Z, Kuca K, Valko M (2016) Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer's disease using multifunctional tacrine-coumarin hybrid molecules. J Inorg Biochem 161:52–62. https://doi.org/10.1016/j.jinorgbio.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  10. Liu Y, Bai L, Li YH, Ni Y, Xin CQ, Zhang CW, Liu JH, Liu ZP, Li L, Huang W (2019) Visualizing hydrogen peroxide in Parkinson’s disease models via a ratiometric NIR fluorogenic probe. Sensors Actuators B Chem 279:38–43. https://doi.org/10.1016/j.snb.2018.09.107

    Article  CAS  Google Scholar 

  11. Sies H (2017) Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol 11:613–619. https://doi.org/10.1016/j.redox.2016.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie FY, Cao XQ, Qu FL, Asiri AM, Sun XP (2018) Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors Actuators B Chem 255:1254–1261. https://doi.org/10.1016/j.snb.2017.08.098

    Article  CAS  Google Scholar 

  13. Čehovin M, Medic A, Scheideler J, Mielcke J, Ried A, Kompare B, Gotvajn AŽ (2017) Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water. Ultrason Sonochem 37:394–404. https://doi.org/10.1016/j.ultsonch.2017.01.036

    Article  CAS  PubMed  Google Scholar 

  14. Xiao HB, Li P, Hu XF, Shi XH, Zhang W, Tang B (2016) Simultaneous fluorescence imaging of hydrogen peroxide in mitochondria and endoplasmic reticulum during apoptosis. Chem Sci 7:6153–6159. https://doi.org/10.1039/C6SC01793B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen SC, Chen ZH, Siahrostami S, Kim TR, Nordlund D, Sokaras D, Nowak S, To JWF, Higgins D, Sinclair R, Nørskov JK, Jaramillo TF, Bao ZN (2018) Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustain Chem Eng 6(1):311–317. https://doi.org/10.1021/acssuschemeng.7b02517

    Article  CAS  Google Scholar 

  16. Qu LL, Liu YY, He SH, Chen JQ, Liang Y, Li HT (2016) Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens Bioelectron 77:292–298. https://doi.org/10.1016/j.bios.2015.09.039

    Article  CAS  PubMed  Google Scholar 

  17. Babaee S, Pakdehi SG, Nabavi AS (2016) An optical chemical sensor for determination of nickel in water and hydrogen peroxide samples. J New Dev Chem 1:2–69. https://doi.org/10.14302/issn.2377-2549.jndc-16-1212

    Article  Google Scholar 

  18. Felix CSA, Silva da DLF, Chagas AVB, Melo de MB, Junior RAC, David JM, Ferreira SLC (2019) A green on-line digestion system using 70% hydrogen peroxide and UV radiation for the determination of chromium in beer employing ETAAS. Microchem J 146: 1204–1208. https://doi.org/10.1016/j.microc.2019.02.029

  19. Tantawi O, Baalbaki A, Asmar RE, Ghauch A (2019) A rapid and economical method for the quantification of hydrogen peroxide (H2O2) using a modified HPLC apparatus. Sci Total Environ 654:107–117. https://doi.org/10.1016/j.scitotenv.2018.10.372

    Article  CAS  PubMed  Google Scholar 

  20. Seven O, Sozmen F, Turan IS (2017) Self immolative dioxetane based chemiluminescent probe for H2O2 detection. Sensor Actuat B-Chem 239:1318–1324. https://doi.org/10.1016/j.snb.2016.09.120

    Article  CAS  Google Scholar 

  21. Madsen BC, Kromis MS (1984) Flow injection and photometric determination of hydrogen peroxide in rainwater with N-ethyl-N-(sulfopropyl)aniline sodium salt. Anal Chem 56:2849–2850. https://doi.org/10.1021/ac00278a049

    Article  CAS  Google Scholar 

  22. Mketo N, Nomngongo PN, Ngila JC (2016) An innovative microwave-assisted digestion method with diluted hydrogen peroxide for rapid extraction of trace elements in coal samples followed by inductively coupled plasma-mass spectrometry. Microchem J 124:201–208. https://doi.org/10.1016/j.microc.2015.08.010

    Article  CAS  Google Scholar 

  23. Wang XW, Qin W (2012) Reactive intermediates-induced potential responses of a polymeric membrane electrode for ultrasensitive potentiometric biosensing. Chem Commun 48:4073–4075. https://doi.org/10.1039/C2CC31020A

    Article  CAS  Google Scholar 

  24. Ko E, Tran VK, Son SE, Hur W, Choi H, Seong GH (2019) Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sensor Actuat B-Chem 294:166–176. https://doi.org/10.1016/j.snb.2019.05.051

    Article  CAS  Google Scholar 

  25. Kong DS, Jin R, Wang TS, Li HX, Yan X, Su DD, Wang CL, Liu FM, Sun P, Liu XM, Gao Y, Ma J, Liang XS, Lu GY (2019) Fluorescent hydrogel test kit coordination with smartphone: robust performance for on-site dimethoate analysis. Biosens Bioelectron 145:111706. https://doi.org/10.1016/j.bios.2019.111706

    Article  CAS  PubMed  Google Scholar 

  26. Yue YK, Huo FJ, Ning P, Zhang YB, Chao JB, Meng XM, Yin CX (2017) Dual-site fluorescent probe for visualizing the metabolism of cys in living cells. J Am Chem Soc 139(8):3181–3185. https://doi.org/10.1021/jacs.6b12845

    Article  CAS  PubMed  Google Scholar 

  27. Cheng YH, Wang JG, Qiu ZJ, Zheng XY, Leung NLC, Lam JWY, Tang BZ (2017) Multiscale humidity visualization by environmentally sensitive fluorescent molecular rotors. Adv Mater 29:46. https://doi.org/10.1002/adma.201703900

    Article  CAS  Google Scholar 

  28. Long LL, Wu YJ, Wang L, Gong AH, Hu RF, Zhang C (2016) Complete suppression of the fluorophore fluorescence by combined effect of multiple fluorescence quenching groups: a fluorescent sensor for Cu2+ with zero background signals. Anal Chim Acta 908:1–7. https://doi.org/10.1016/j.aca.2015.12.016

    Article  CAS  PubMed  Google Scholar 

  29. Wang HQ, Yang L, Chu SY, Liu BH, Zhang QK, Zou LM, Yu SM, Jiang CL (2019) Semiquantitative visual detection of lead ions with a smartphone via a colorimetric paper-based analytical device. Anal Chem 91(14):9292–9299. https://doi.org/10.1021/acs.analchem.9b02297

    Article  CAS  PubMed  Google Scholar 

  30. Rana S, Elci SG, Mout R, Singla AK, Yazdani M, Bender M, Bajaj A, Saha K, Bunz UHF, Jirik FR, Rotello VM (2016) Ratiometric array of conjugated polymers-fluorescent protein provides a robust mammalian cell sensor. J Am Chem Soc 138(13):4522–4529. https://doi.org/10.1021/jacs.6b00067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xia BY, Yan Y, Li N, Wu HB, Lou XW (David), Wang X (2016) A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat Energy 1: 15006. https://doi.org/10.1038/nenergy.2015.6

  32. Yin Z, Wan S, Yang J, Kurmoo M, Zeng MH (2019) Recent advances in post-synthetic modification of metal-organic frameworks: new types and tandem reactions. Coord Chem Rev 378:500–512. https://doi.org/10.1016/j.ccr.2017.11.015

    Article  CAS  Google Scholar 

  33. Wu SY, Lin YN, Liu JW, Shi W, Yang GM, Cheng P (2018) Rapid detection of the biomarkers for carcinoid tumors by a water stable luminescent lanthanide metal-organic framework sensor. Adv Funct Mater 28:17. https://doi.org/10.1002/adfm.201707169

    Article  CAS  Google Scholar 

  34. Yang XQ, Zou H, Sun XW, Sun TY, Guo C, Fu YQ, Wu CML, Qiao XS, Wang F (2019) One-step synthesis of mixed lanthanide metal-organic framework films for sensitive temperature mapping. Adv Opt Mater 7:19. https://doi.org/10.1002/adom.201900336

    Article  CAS  Google Scholar 

  35. Tang J, Huang L, Cheng Y, Zhuang J, Li P, Tang D (2018) Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction. Microchim Acta 185:569. https://doi.org/10.1007/s00604-018-3089-7

    Article  CAS  Google Scholar 

  36. Cui W, Qin H, Zhou Y, Du J (2017) Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase-stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching. Microchim Acta 184:1103–1108. https://doi.org/10.1007/s00604-017-2110-x

    Article  CAS  Google Scholar 

  37. Cui Y, Chen F, Yin XB (2019) A ratiometric fluorescence platform based on boric-acid-functional Eu-MOF for sensitive detection of H2O2 and glucose. Biosens Bioelectron 135:208–215. https://doi.org/10.1016/j.bios.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  38. Test ST, Weiss SJ (1984) Quantitative and temporal characterization of the extracellular H2O2 pool generated by human neutrophils. J Biol Chem 259:399–405

    CAS  PubMed  Google Scholar 

  39. Li L, Zhang LP, Zhao Y, Chen ZB (2018) Colorimetric detection of hg(II) by measurement the color alterations from the “before” and “after” RGB images of etched triangular silver nanoplates. Microchim Acta 185:235. https://doi.org/10.1007/s00604-018-2759-9

    Article  CAS  Google Scholar 

  40. Ding YN, Yang BC, Liu H, Liu ZX, Zhang X, Zheng XW, Liu QY (2018) FePt-au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem 259:775–783. https://doi.org/10.1016/j.snb.2017.12.115

    Article  CAS  Google Scholar 

  41. Liu QY, Yang YT, Li H, Zhu RR, Shao Q, Yang SG, Xu JJ (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxylpheyl)-porphyrin: promising peroxidase mimetics for H2O2 and glucose detection. Biosens Bioelectron 64:147–153. https://doi.org/10.1016/j.bios.2014.08.062

    Article  CAS  PubMed  Google Scholar 

  42. Liu QY, Yang YT, Lv XT, Ding YN, Zhang YZ, Jing JJ, Xu CX (2017) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H2O2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734. https://doi.org/10.1016/j.snb.2016.09.049

    Article  CAS  Google Scholar 

  43. Chang HC, Ho JA (2015) Gold nanocluster-assisted fluorescent detection for hydrogen peroxide and cholesterol based on the inner filter effect of gold nanoparticles. Anal Chem 87(20):10362–10367. https://doi.org/10.1021/acs.analchem.5b02452

    Article  CAS  PubMed  Google Scholar 

  44. Xu C, Wang X, Zhu JW (2008) Graphene-metal particle nanocomposites. J Phys Chem C 112(50):19841–19845. https://doi.org/10.1021/jp807989b

    Article  CAS  Google Scholar 

  45. Shah VP, Midha KK, Findlay JWA, Hill HM, Hulse JD, Mcgilveray IJ, Mckay G, Miller KJ, Patnaik RN, Powell ML (2000) Bioanalytical method validation-a revisit with a decade of progress. Pharm Res 17:1551–1557. https://doi.org/10.1023/A:1007669411738

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 31800670 and 21371009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanguang Zhang.

Ethics declarations

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the ethical committee in Anqing Normal University or comparable ethical standards.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.18 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, X., Liu, S., Su, B. et al. Luminescent europium(III)-organic framework for visual and on-site detection of hydrogen peroxide via a tablet computer. Microchim Acta 187, 416 (2020). https://doi.org/10.1007/s00604-020-04379-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04379-4

Keywords

Navigation