Iron doped graphitic carbon nitride with peroxidase like activity for colorimetric detection of sarcosine and hydrogen peroxide


The successful synthesis is reported of Mn, Fe, Co, Ni, Cu-doped g-C3N4 nanoflakes via a simple one-step pyrolysis method, respectively. Among them, the Fe-doped g-C3N4 nanoflakes exhibited the highest peroxidase-like activity, which can be used for colorimetric detection of hydrogen peroxide (H2O2) and sarcosine (SA), within the detection ranges of 2–100 μM and 10–500 μM and detection limits of 1.8 μM and 8.6 μM, respectively. The catalytic mechanism of the Fe-doped g-C3N4 nanoflake was also explored and verified the generation of hydroxyl radical (•OH) through fluorescence method. It is believed that the Fe-doped g-C3N4 nanoflakes as enzyme mimics will greatly promote the practical applications in a variety of fields in the future including biomedical science, environmental governance, antibacterial agent, and bioimaging due to their extraordinary catalytic performance and stability.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Wu JJ, Wang XY, Wang Q, Lou ZP, Li SR, Zhu YY, Qin L, Wei H (2019) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev 48:1004–1076.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ling PH, Zhang Q, Cao TT, Gao F (2018) Versatile three-dimensional porous cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases. Angew Chem Int Ed 57:6819–6824.

    CAS  Article  Google Scholar 

  3. 3.

    Sun HJ, Zhou Y, Ren JS, Qu XG (2018) Carbon nanozymes: enzymatic properties, catalytic mechanism, and applications. Angew Chem Int Ed 57:9224–9237.

    CAS  Article  Google Scholar 

  4. 4.

    Jin L, Meng Z, Zhang Y, Cai S, Zhang Z, Li C, Shang L, Shen Y (2017) Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl Mater Interfaces 9:10027–10033.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    He WW, Jia HM, Li XX, Lei Y, Li J, Zhao HX, Mi LM, Zhang LZ, Zheng Z (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale. 4:3501–3506.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Jiao L, Wang Y, Jiang HL, Xu Q (2018) Metal–organic frameworks as platforms for catalytic applications. Adv Mater 30:1703663.

    CAS  Article  Google Scholar 

  7. 7.

    Zhang H, Liang X, Han L, Li F (2018) “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis. Small. 14:1803256.

    CAS  Article  Google Scholar 

  8. 8.

    Zhang ZJ, Zhang XH, Liu BW, Lin JW (2017) Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J Am Chem Soc 139:5412–5419.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Zhang XL, Zheng C, Guo SS, Li J, Yang HH, Chen G (2014) Turn-on fluorescence sensor for intracellular imaging of glutathione using g-C3N4 nanosheet–MnO2 sandwich nanocomposite. Anal Chem 86:3426–3434.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Zhu JJ, Xiao P, Li HL, Carabineiro SAC (2014) Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interfaces 6:16449–16465.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Wang YW, Wang LX, An FP, Xu H, Yin ZJ, Tang SR, Yang HH, Song HB (2017) Graphitic carbon nitride supported platinum nanocomposites for rapid and sensitive colorimetric detection of mercury ions. Anal Chim Acta 980:72–78.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Zhang WC, Li X, Xu XC, He YF, Qiu FX, Pan JM, Niu XH (2019) Pd nanoparticle-decorated graphitic C3N4 nanosheets with bifunctional peroxidase mimicking and ON–OFF fluorescence enable naked-eye and fluorescent dual-readout sensing of glucose. Mater Chem B 7:233–239.

    CAS  Article  Google Scholar 

  14. 14.

    Cernei N, Heger Z, Gumulec J, Zitka O, Masarik M, Babula P, Eckschlager T, Stiborova M, Kizek R, Adam V (2013) Sarcosine as a potential prostate cancer biomarker—a review. Int J Mol Sci 14:13893–13908.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Cernei N, Zitka O, Ryvolova M, Adam V, Masarik M, Kizek R (2012) Spectrometric and electrochemical analysis of sarcosine as a potential prostate carcinoma marker. Int J Electrochem Sci 7:4286–4301

    CAS  Google Scholar 

  16. 16.

    Dong WF, Huang YM (2020) CeO2/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose. Microchim Acta 187:11.

    CAS  Article  Google Scholar 

  17. 17.

    Zhang X, Wang CY, Gao YF (2020) Cerium(III)-doped MoS2 nanosheets with expanded interlayer spacing and peroxidase-mimicking properties for colorimetric determination of hydrogen peroxide. Microchim Acta 187:111.

    CAS  Article  Google Scholar 

  18. 18.

    Su L, Cai YX, Wang L, Dong WP, Mao GJ, Li Y, Zhao MS, Ma YH, Zhang H (2020) Hemin@carbon dot hybrid nanozymes with peroxidase mimicking properties for dual (colorimetric and fluorometric) sensing of hydrogen peroxide, glucose and xanthine. Microchim Acta 187:1–11.

    CAS  Article  Google Scholar 

  19. 19.

    Zhang P, Sun DR, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi WY (2019) Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 10:940.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Devi KRS, Mathew S, Rajan R, Georgekutty J, Kasinathan K, Pinheiro D, Sugunan S (2019) Biogenic synthesis of g-C3N4/Bi2O3 heterojunction with enhanced photocatalytic activity and statistical optimization of reaction parameters. Appl Surf Sci 494:465–476.

    CAS  Article  Google Scholar 

  21. 21.

    Li Y, Liu XM, Tan L, Cui ZD, Yang XJ, Zheng YF, Yeung KWK, Chu P, Wu SL (2018) Rapid sterilization and accelerated wound healing using Zn2+ and graphene oxide modified g-C3N4 under dual light irradiation. Adv Funct Mater 28:1800299.

    CAS  Article  Google Scholar 

  22. 22.

    Liu Q, Guo YR, Chen ZH, Zhang ZG, Fang XM (2016) Constructing a novel ternary Fe (III)/graphene/g-C3N4 composite photocatalyst with enhanced visible-light driven photocatalytic activity via interfacial charge transfer effect. Appl Catal B Environ 183:231–241.

    CAS  Article  Google Scholar 

  23. 23.

    Zhang JS, Zhang MW, Zhang GG, Wang XC (2012) Synthesis of carbon nitride semiconductors in sulfur flux for water photoredox catalysis. ACS Catal 2:940–948.

    CAS  Article  Google Scholar 

  24. 24.

    Serov A, Artyushkova K, Atanassov P (2014) Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity. Adv Energy Mater 4:1301735.

    CAS  Article  Google Scholar 

  25. 25.

    Kim SJ, Mahmood J, Kim CG, Kim SW, Jung S, Zhu G, De Yoreo JJ, Kim G, Baek JB (2018) Defect-free encapsulation of Fe0 in 2D fused organic networks as a durable oxygen reduction electrocatalyst. J Am Chem Soc 140:1737–1742.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hu JS, Zhang PF, An WJ, Liu L, Liang YH, Cui WQ (2019) In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater. Appl Catal B Environ 245:130–142.

    CAS  Article  Google Scholar 

  27. 27.

    Ye MY, Zhao ZH, Hu ZF, Hu ZF, Liu LQ, Hui MH, Shen ZR, Ma TY (2017) 0D/2D heterojunctions of vanadate quantum dots/graphitic carbon nitride nanosheets for enhanced visible-light-driven photocatalysis. Angew Chem Int Ed 56:8407–8411.

    CAS  Article  Google Scholar 

  28. 28.

    Li HC, Shan C, Pan BC (2018) Fe (III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species. E nviron Sci Technol 52:2197–2205.

    CAS  Article  Google Scholar 

  29. 29.

    Woo S, Kim YR, Chung TD, Piao YZ, Kim H (2012) Synthesis of a graphene–carbon nanotube composite and its electrochemical sensing of hydrogen peroxide. Electrochim Acta 59:509–514.

    CAS  Article  Google Scholar 

  30. 30.

    Tavakkoli H, Akhond M, Ghorbankhani GA, Absalan G (2020) Electrochemical sensing of hydrogen peroxide using a glassy carbon electrode modified with multiwalled carbon nanotubes and zein nanoparticle composites: application to HepG2 cancer cell detection. Microchim Acta 187:105.

    CAS  Article  Google Scholar 

  31. 31.

    Zhu WY, Zhou Y, Tao MD, Yan XQ, Liu Y, Zhou XM (2020) An electrochemical and fluorescence dual-signal assay based on Fe3O4@MnO2 and N-doped carbon dots for determination of hydrogen peroxide. Microchim Acta 187:187.

    CAS  Article  Google Scholar 

  32. 32.

    Gul U, Kanwal S, Tabassum S, Gilani MA, Rahim A (2020) Microwave-assisted synthesis of carbon dots as reductant and stabilizer for silver nanoparticles with enhanced-peroxidase like activity for colorimetric determination of hydrogen peroxide and glucose. Microchim Acta 187:135.

    CAS  Article  Google Scholar 

  33. 33.

    Jiang XY, Zhang L, Liu YL, Yu XD, Liang YY, Qu P, Zhao WW, Xu JJ, Chen HY (2018) Hierarchical CuInS2-based heterostructure: application for photocathodic bioanalysis of sarcosine. Biosens Bioelectron 107:230–236.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Yamkamon V, Phakdee B, Yainoy S, Suksrichawalit T, Tatanandana T, Sangkum P, Eiamphungporn W (2018) Development of sarcosine quantification in urine based on enzyme-coupled colorimetric method for prostate cancer diagnosis. EXCLI J 17:467.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lan JM, Xu WM, Wan QP, Zhang X, Lin J, Chen JH, Chen JZ (2014) Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal Chim Acta 825:63–68.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Su LJ, Zhang Z, Xiong YH (2018) Water dispersed two-dimensional ultrathin Fe (iii)-modified covalent triazine framework nanosheets: peroxidase like activity and colorimetric biosensing applications. Nanoscale 10:20120–20125.

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the General Project Program of the Natural Science Foundation of Hubei Province (no. 2017CFB529), the National Natural Science Foundation of China (grant no. 21405035, 21775033), and the Open Project Funding of the State Key Laboratory of Biocatalysis and Enzyme Engineering.

Author information



Corresponding authors

Correspondence to Wei Wen or Shengfu Wang.

Ethics declarations

Conflict of interest

The author(s) declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 41509 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Peng, X., Xiong, C. et al. Iron doped graphitic carbon nitride with peroxidase like activity for colorimetric detection of sarcosine and hydrogen peroxide. Microchim Acta 187, 383 (2020).

Download citation


  • Nanozyme
  • Fe-doped g-C3N4 nanoflakes
  • Peroxidase-like activity
  • Colorimetric sensors
  • Sarcosine detection
  • H2O2 detection