An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film

Abstract

New multi-walled carbon nanotubes supported on Ti3C2–MXene and chitosan (chit) composite film–based electrochemical sensor for ifosfamide (IFO), acetaminophen (ACOP), domperidone (DOM), and sumatriptan (SUM) have been developed. Ti3C2–MXene was synthesized by a fluoride method. Structural and chemical characterizations suggested the successful preparation of Ti3C2–MXene with clearly seen layered morphology, defined 0 0 2 diffraction peak at 7.5° and complete absence of 1 0 4 plane at 39°. The electrochemical performance of the sensor was investigated by cyclic voltammetry and adsorptive stripping differential pulse voltammetry. The Ti3C2/MWCNT/Chit modified glassy carbon electrode exhibits enhanced electrocatalytic activities toward the oxidation of target analytes. Excellent conductivity, large surface area, and high catalytic properties of the Ti3C2–MXene showed synergistic effects with MWCNTs and helped in achieving low detection limits of targets with high selectivity and reproducibility. The assay allows determination of IFO, ACOP, DOM, and SUM in the concentration ranges 0.0011–1.0, 0.0042–7.1, 0.0046–7.3, and 0.0033–61 μM with low detection limits of 0.00031, 0.00028, 0.00034, and 0.00042 μM, respectively. The sensor was successfully applied for voltammetric screening of target analytes in urine and blood serum samples with recoveries > 95.21%. Schematic illustration of the synthesis of self-assembled MXene/MWCNT/chitosan nanocomposite is given and its application to the voltammetric determination of ifosfamide, acetaminophen, domperidone, and sumatriptan described.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Naguib M, Gogotsi Y (2015) Synthesis of two-dimensional materials by selective extraction. Acc Chem Res 48:128–135

    CAS  Article  Google Scholar 

  2. 2.

    Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26: 992–1005

  3. 3.

    Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505

    CAS  Article  Google Scholar 

  4. 4.

    Wen Y, Rufford TE, Chen X, Li N, Lyu M, Dai L, Wang L (2017) Nitrogen-doped Ti3C2Tx MXene electrodes for high–performance supercapacitors. Nano Energy 38:368–376

    CAS  Article  Google Scholar 

  5. 5.

    Okubo M, Sugahara A, Kajiyama S, Yamada A (2018) MXene as a charge storage host. Acc Chem Res 51:591–599

    CAS  Article  Google Scholar 

  6. 6.

    Gao G, O'Mullane AP, Du A (2017) 2D MXenes: a new family of promising catalysts for the hydrogen evolution reaction. ACS Catal 7:494–500

    CAS  Article  Google Scholar 

  7. 7.

    Kim SJ, Koh H-J, Ren CE, Kwon O, Maleski K, Cho S-Y, Anasori B, Kim C-K, Choi Y-K, Kim J, Gogotsi Y, Jung H-T (2018) Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal–to–noise ratio. ACS Nano 12:986–993

    CAS  Article  Google Scholar 

  8. 8.

    Bian R, He G, Zhi W, Xiang S, Wang T, Cai D (2019) Ultralight MXene–based aerogels with high electromagnetic interference shielding performance. J Mater Chem C 7:474–478

    CAS  Article  Google Scholar 

  9. 9.

    Zheng J, Wang B, Jin Y, Weng B, Chen J (2019) Nanostructured MXene-based biomimetic enzymes for amperometric detection of superoxide anions from HepG2 cells. Microchim Acta 186:95

    Article  Google Scholar 

  10. 10.

    Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W, Li J, Li Y, Zhang H (2019) MXene–enabled electrochemical microfluidic biosensor: applications toward multicomponent continuous monitoring in whole blood. Adv Funct Mater 29:1807326

    Article  Google Scholar 

  11. 11.

    Wu L, Lu X, Dhanjai WZ-S, Dong Y, Wang X, Zheng S, Chen J (2018) 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens Bioelectron 107:69–75

    CAS  Article  Google Scholar 

  12. 12.

    Lorencova L, Bertok T, Filip J, Jerigova M, Velic D, Kasak P, Mahmoud KA, Tkac J (2018) Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications. Sens Actuators B Chem 263:360–368

    CAS  Article  Google Scholar 

  13. 13.

    Huang R, Chen S, Yu J, Jiang X (2019) Self-assembled Ti3C2/MWCNTs nanocomposites modified glassy carbon electrode for electrochemical simultaneous detection of hydroquinone and catechol. Ecotoxicol Environ Saf 184:109619

    CAS  Article  Google Scholar 

  14. 14.

    Hamidi H, Bozorgzadeh S, Haghighi B (2017) Amperometric hydrazine sensor using a glassy carbon electrode modified with gold nanoparticle-decorated multiwalled carbon nanotubes. Microchim Acta 184:4537–4543

    CAS  Article  Google Scholar 

  15. 15.

    Alizadeh T, Ganjali MR, Akhoundian M, Norouzi P (2016) Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchim Acta 183:1123–1130

    CAS  Article  Google Scholar 

  16. 16.

    Yang P, Gao X, Wang L, Wu Q, Chen Z, Lin X (2014) Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Microchim Acta 181:231–238

    CAS  Article  Google Scholar 

  17. 17.

    Suginta W, Khunkaewla P, Schulte A (2013) Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem Rev 113:5458–5479

    CAS  Article  Google Scholar 

  18. 18.

    Xu W, Qing Y, Chen S, Chen J, Qin Z, Qiu JF, Li CR (2017) Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Microchim Acta 184:3339–3347

    CAS  Article  Google Scholar 

  19. 19.

    Hao C, Shen Y, Shen J, Xu K, Wang X, Zhao Y, Ge C (2016) A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and cd(II). Microchim Acta 183:1823–1830

    CAS  Article  Google Scholar 

  20. 20.

    Kilickap S, Cakar M, Onal IK, Tufan A, Akoglu H, Aksoy S, Erman M, Tekuzman G (2006) Nonconvulsive status epilepticus due to ifosfamide. Ann Pharmacother 40:332–335

    CAS  Article  Google Scholar 

  21. 21.

    Boddy AV, Yule SM (2000) Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 38:291–304

    CAS  Article  Google Scholar 

  22. 22.

    Rossi R, Godde A, Kleinebrand A, Riepenhausen M, Boos J, Ritter J, Jurgens H (1994) Unilateral nephrectomy and cisplatin as risk factors of ifosfamide-induced nephrotoxicity: analysis of 120 patients. J Clin Oncol 12:159–165

    CAS  Article  Google Scholar 

  23. 23.

    Prasad BB, Kumar A, Singh R (2017) Synthesis of novel monomeric graphene quantum dots and corresponding nanocomposite with molecularly imprinted polymer for electrochemical detection of an anticancerous ifosfamide drug. Biosens Bioelectron 94:1–9

    Article  Google Scholar 

  24. 24.

    Hatamluyi B, Lorestani F, Es’haghi Z (2018) Au/Pd@rGO nanocomposite decorated with poly (L-cysteine) as a probe for simultaneous sensitive electrochemical determination of anticancer drugs, ifosfamide and etoposide. Biosens Bioelectron 120:22–29

    CAS  Article  Google Scholar 

  25. 25.

    Anasori B, Lukatskaya MR, Gogotsi Y (2017) 2D metal carbides and nitrides (MXenes) for energy storage. Nat Rev Mater 2:16098

    CAS  Article  Google Scholar 

  26. 26.

    Gogotsi Y (2015) Chemical vapour deposition: transition metal carbides go 2D. Nat Mater 14:1079–1080

    CAS  Article  Google Scholar 

  27. 27.

    Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29:7633–7644

    CAS  Article  Google Scholar 

  28. 28.

    Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253

    CAS  Article  Google Scholar 

  29. 29.

    Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW (2016) X–ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci 362:406–417

    CAS  Article  Google Scholar 

  30. 30.

    Ahmed B, Anjum DH, Hedhili MN, Gogotsi Y, Alshareef HN (2016) H2O2 assisted room temperature oxidation of Ti2C MXene for Li–ion battery anodes. Nanoscale 8:7580–7587

    CAS  Article  Google Scholar 

  31. 31.

    Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL (2018) A practical beginner’s guide to cyclic voltammetry. J Chem Educ 95:197–206

    CAS  Article  Google Scholar 

  32. 32.

    Kalambate PK, Sanghavi BJ, Karna SP, Srivastava AK (2015) Simultaneous voltammetric determination of paracetamol and domperidone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode. Sens Actuators B Chem 213:285–294

    CAS  Article  Google Scholar 

  33. 33.

    Kalambate PK, Li Y, Shen Y, Huang Y (2019) Mesoporous Pd@Pt core–shell nanoparticles supported on multi–walled carbon nanotubes as a sensing platform: application to simultaneous electrochemical detection of anticancer drugs doxorubicin and dasatinib. Anal Methods 11:443–453

    CAS  Article  Google Scholar 

  34. 34.

    Laviron E (1972) Theoretical study of a reversible reaction followed by a chemical reaction in thin layer linear potential sweep voltammetry. J Electroanal Chem Interfacial Electrochem 39:1–23

    CAS  Article  Google Scholar 

  35. 35.

    Paci A, Martens T, Royer J (2001) Anodic oxidation of ifosfamide and cyclophosphamide: a biomimetic metabolism model of the oxazaphosphorinane anticancer drugs. Bioorg Med Chem Lett 11:1347–1349

    CAS  Article  Google Scholar 

  36. 36.

    Aftab S, Bakirhan NK, Esim O, Shah A, Savaser A, Ozkan Y, Ozkan SA (2020) NH2-fMWCNT-titanium dioxide nanocomposite based electrochemical sensor for the voltammetric assay of antibiotic drug nadifloxacin and its in vitro permeation study. J Electroanal Chem 859:113857

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Authors thank the Analytical and Testing Centre and State Key Laboratory of Materials Processing and Die & Mold Technology of HUST for providing SEM, XPS, and XRD measurements.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51672098 and 51632001).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunhui Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3445 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kalambate, P.K., Dhanjai, Sinha, A. et al. An electrochemical sensor for ifosfamide, acetaminophen, domperidone, and sumatriptan based on self-assembled MXene/MWCNT/chitosan nanocomposite thin film. Microchim Acta 187, 402 (2020). https://doi.org/10.1007/s00604-020-04366-9

Download citation

Keywords

  • Electrochemical analysis
  • Stripping voltammetry
  • Modified electrodes
  • 2D materials
  • Functionalized carbon nanotubes
  • Biopolymer
  • Multi-drug analysis
  • Anticancer drugs