Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce

Abstract

A nanocomposite based on nanofibrillar cellulose (NFC) coated with gold–silver (core-shell) nanoparticles (Au@Ag NPs) was developed as a novel surface-enhanced Raman spectroscopy (SERS) substrate. SERS performance of NFC/Au@Ag NP nanocomposite was tested by 4-mercaptobenzoic acid. The cellulose nanofibril network was a suitable platform that allowed Au@Ag NPs to be evenly distributed and stabilized over the substrate, providing more SERS hotspots for the measurement. Two pesticides, thiram and paraquat, were successfully detected either individually or as a mixture in lettuce by SERS coupled with the nanocomposite. Strong Raman scattering signals for both thiram and paraquat were obtained within a Raman shift range of 400–2000 cm−1 and a Raman intensity ~ 8 times higher than those acquired by NFC/Au NP nanocomposite. Characteristic peaks were clearly observable in all SERS spectra even at a low concentration of 10 μg/L of pesticides. Limit of detection values of 71 and 46 μg/L were obtained for thiram and paraquat, respectively. Satisfactory SERS performance, reproducibility, and sensitivity of NFC/Au@Ag NP nanocomposite validate its applicability for real-world analysis to monitor pesticides and other contaminants in complex food matrices within a short acquisition time.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Fenik J, Tankiewicz M, Biziuk M (2011) Properties and determination of pesticides in fruits and vegetables. TrAC Trends Anal Chem 30:814–826

    CAS  Article  Google Scholar 

  2. 2.

    Chang PL, Hsieh MM, Chiu TC (2016) Recent advances in the determination of pesticides in environmental samples by capillary electrophoresis. Int J Environ Res Public Health 13:409

    Article  Google Scholar 

  3. 3.

    Llorent-Martínez EJ, Ortega-Barrales P, Fernández-de Córdova ML, Ruiz-Medina A (2011) Trends in flow-based analytical methods applied to pesticide detection: a review. Anal Chim Acta 684:30–39

    Article  Google Scholar 

  4. 4.

    López-Paz JL, Catalá-Icardo M (2011) Analysis of pesticides by flow injection coupled with chemiluminescent detection: a review. Anal Lett 44:146–175

    Article  Google Scholar 

  5. 5.

    Mirceski V, Gulaboski R (2014) Recent achievements in square-wave voltammetry (a review). Maced J Chem Chem Eng 33:1–12

    CAS  Google Scholar 

  6. 6.

    Pang S, Yang T, He L (2016) Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal Chem 85:73–82

    CAS  Article  Google Scholar 

  7. 7.

    Aroca R (2006) Surface-enhanced vibrational spectroscopy. Chicheste, John Wiley & Sons, Ltd

    Google Scholar 

  8. 8.

    Bantz KC, Meyer AF, Wittenberg NJ, Im H, Kurtuluş Ö, Lee SH, Lindquist NC, Oh SH, Haynes CL (2011) Recent progress in SERS biosensing. Phys Chem Chem Phys 13:11551–11567

    Article  Google Scholar 

  9. 9.

    Ji Y, Yang S, Guo S, Song X, Ding B, Yang Z (2010) Bimetallic Ag/Au nanoparticles: a low temperature ripening strategy in aqueous solution. Colloids Surfaces A Physicochem Eng Asp 372:204–209

    CAS  Article  Google Scholar 

  10. 10.

    Cortie MB, McDonagh AM (2011) Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem Rev 111:3713–3735

    CAS  Article  Google Scholar 

  11. 11.

    Jana NR (2003) Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst 128:954–956

    CAS  Article  Google Scholar 

  12. 12.

    Yang Y, Liu J, Fu Z-W, Qin D (2014) Galvanic replacement-free deposition of Au on Ag for core–shell nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136:8153–8156

    CAS  Article  Google Scholar 

  13. 13.

    Raveendran P, Fu J, Wallen SL (2006) A simple and “green” method for the synthesis of Au, Ag, and Au-Ag alloy nanoparticles. Green Chem 8:34–38

    CAS  Article  Google Scholar 

  14. 14.

    Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316

    CAS  Article  Google Scholar 

  15. 15.

    Ogundare SA, van Zyl WE (2019) A review of cellulose-based substrates for SERS: fundamentals, design principles, applications. Cellulose 26:6489–6528

    CAS  Article  Google Scholar 

  16. 16.

    Ngo YH, Li D, Simon GP, Garnier G (2012) Gold nanoparticle-paper as a three-dimensional surface enhanced raman scattering substrate. Langmuir 28:8782–8790

    CAS  Article  Google Scholar 

  17. 17.

    Xiong Z, Chen X, Liou P, Lin M (2017) Development of nanofibrillated cellulose coated with gold nanoparticles for measurement of melamine by SERS. Cellulose 24:2801–2811

    CAS  Article  Google Scholar 

  18. 18.

    Wei H, Rodriguez K, Renneckar S, Leng W, Vikesland PJ (2015) Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications. Analyst 140:5640–5649

    CAS  Article  Google Scholar 

  19. 19.

    Xiong Z, Lin M, Lin H, Huang M (2018) Facile synthesis of cellulose nanofiber nanocomposite as a SERS substrate for detection of thiram in juice. Carbohydr Polym 189:79–86

    CAS  Article  Google Scholar 

  20. 20.

    Zhang S, Xiong R, Mahmoud MA, Quigley EN, Chang H, el-Sayed M, Tsukruk VV (2018) Dual-excitation nanocellulose plasmonic membranes for molecular and cellular SERS detection. ACS Appl Mater Interfaces 10:18380–18389

    CAS  Article  Google Scholar 

  21. 21.

    Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650

    CAS  Article  Google Scholar 

  22. 22.

    Jiang F, Hsieh Y-L (2014) Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering. Biomacromolecules 15:3608–3616

    CAS  Article  Google Scholar 

  23. 23.

    Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20–22

    CAS  Article  Google Scholar 

  24. 24.

    Olson TY, Schwartzberg AM, Orme CA, Talley CE, O'Connell B, Zhang JZ (2008) Hollow gold−silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. J Phys Chem C 112:6319–6329

    CAS  Article  Google Scholar 

  25. 25.

    Song L, Mao K, Zhou X, Hu J (2016) A novel biosensor based on Au@Ag core–shell nanoparticles for SERS detection of arsenic (III). Talanta 146:285–290

    CAS  Article  Google Scholar 

  26. 26.

    Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, Han MY (2012) Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem 84:255–261

    CAS  Article  Google Scholar 

  27. 27.

    Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos A Appl Sci Manuf 4:2387–2394

    Google Scholar 

  28. 28.

    Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969

    CAS  Article  Google Scholar 

  29. 29.

    Zhang L, Li X, Ong L, Tabor RF, Bowen BA, Fernando AI, Nilghaz A, Garnier G, Gras SL, Wang X, Shen W (2015) Cellulose nanofibre textured SERS substrate. Colloids Surfaces A Physicochem Eng Asp 468:309–314

    CAS  Article  Google Scholar 

  30. 30.

    Haynes CL, McFarland AD, Van Duyne RP (2005) Surface-enhanced Raman spectroscopy. Anal Chem 77:338 A–346 A

    CAS  Article  Google Scholar 

  31. 31.

    Lu X, Samuelson DR, Xu Y, Zhang H, Wang S, Rasco BA, Xu J, Konkel ME (2013) Detecting and tracking nosocomial methicillin-resistant Staphylococcus aureus using a microfluidic SERS biosensor. Anal Chem 85:2320–2327

    CAS  Article  Google Scholar 

  32. 32.

    Zhang L, Wang B, Zhu G, Zhou X (2014) Synthesis of silver nanowires as a SERS substrate for the detection of pesticide thiram. Spectrochim Acta A Mol Biomol Spectrosc 133:411–416

    CAS  Article  Google Scholar 

  33. 33.

    Saute B, Narayanan R (2011) Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 136:527–532

    CAS  Article  Google Scholar 

  34. 34.

    Luo H, Wang X, Huang Y, Lai K, Rasco BA, Fan Y (2018) Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. J Sci Food Agric 98:3892–3898

    CAS  Article  Google Scholar 

  35. 35.

    Fang H, Zhang X, Zhang SJ, Liu L, Zhao YM, Xu HJ (2015) Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 213:452–456

    CAS  Article  Google Scholar 

  36. 36.

    Wang C, Wu X, Dong P, Chen J, Xiao R (2016) Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Biosens Bioelectron 86:944–950

    CAS  Article  Google Scholar 

  37. 37.

    Group EW EWG’s 2019 Shopper’s Guide to Pesticides in Produce™. https://www.ewg.org/foodnews/summary.php

  38. 38.

    Kolberg DIS, Mack D, Anastassiades M et al (2012) Development and independent laboratory validation of a simplified. Sample preparation method for the determination of paraquat and diquat in food comodities. Anal Chim Acta 404:2465–2474

    CAS  Google Scholar 

  39. 39.

    Sun H, Liu H, Wu Y (2017) A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl Surf Sci 416:704–709

    CAS  Article  Google Scholar 

  40. 40.

    EPA (2019) Electronic code of federal regulations

  41. 41.

    Bennett B, Workman T, Smith MN, Griffith WC, Thompson B, Faustman EM (2019) Longitudinal, seasonal, and occupational trends of multiple pesticides in house dust. Environ Health Perspect 127:17003

    CAS  Article  Google Scholar 

  42. 42.

    Etchegoin PG, Le Ru EC (2008) A perspective on single molecule SERS: current status and future challenges. Phys Chem Chem Phys 10:6079–6089

    CAS  Article  Google Scholar 

Download references

Funding

This research was financially supported by the Robert T. Marshall Scholarship, USDA National Institute of Food and Agriculture (2016-67021-24994 and 2018-67017-27880), and USDA NIFA Multi-state Project NC-1194.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mengshi Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3562 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asgari, S., Sun, L., Lin, J. et al. Nanofibrillar cellulose/Au@Ag nanoparticle nanocomposite as a SERS substrate for detection of paraquat and thiram in lettuce. Microchim Acta 187, 390 (2020). https://doi.org/10.1007/s00604-020-04358-9

Download citation

Keywords

  • Nanofibrillar cellulose
  • Gold–silver core-shell nanoparticles
  • SERS
  • Pesticides
  • Bimetallic