Skip to main content
Log in

Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal-organic framework nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

AuCu/PPy/Cu-TCPP nanocomposites were synthesized by attaching AuCu nanoparticles to a polypyrrole (PPy)-modified 2D Cu-TCPP metal-organic framework nanosheet; Cu-TCPP can exhibit catalytic activity for the reduction of H2O2. Based on the nanocomposite, a new method for the determination of H2O2 was established. The morphology of the AuCu/PPy/Cu-TCPP was analyzed by transmission electron microscopy. Cu-TCPP exhibited a 2D nanosheet with obvious wrinkles, and a large amount of AuCu was uniformly attached to PPy/Cu-TCPP. The composition and structure were studied by X-ray diffraction, FTIR, and X-ray photoelectron spectroscopy. At the optimal working potential and scan rate of − 0.55 V(vs. SCE) and 100 mV/s, respectively, electrochemical studies indicated that in N2-saturated supporting electrolyte, the method showed good catalytic performance for H2O2, with a detection limit of 6.67 nM (S/N = 3), a linear range of 7.10 μM–24.10 mM, and a sensitivity of 35.0 μA mM−1 cm2. Compared to H2O2 methods based on related materials, this method exhibits a wide linear range, and the detection limit is down to nanomolar.

Schematic presentation of the preparation of AuCu/PPy/Cu-TCPP nanocomposites.

AuCu/PPy/Cu-TCPP nanocomposite was prepared by loading gold–copper (AuCu) bimetallic nanoparticles with good catalytic properties on two-dimensional copper (II)-porphyrin (Cu-TCPP) nanosheet metal-organic framework material, whose conductivity was improved by polypyrrole (PPy). A method for the determination of hydrogen peroxide by voltammetric was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iglesias D, Giuliani A, Melchionna M, Marchesan S, Criado A, Nasi L, Bevilacqua M, Tavagnacco C, Vizza F, Prato M, Fornasiero P (2018) N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4(1):106–123. https://doi.org/10.1016/j.chempr.2017.10.013

    Article  CAS  Google Scholar 

  2. Xie F, Cao X, Qu F, Asiri AM, Sun X (2018) Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors Actuators B Chem 255:1254–1261. https://doi.org/10.1016/j.snb.2017.08.098

    Article  CAS  Google Scholar 

  3. Valsami-Jones E, Lynch I (2015) How safe are nanomaterials? Science 350(6259):388–389. https://doi.org/10.1126/science.aad0768

    Article  CAS  PubMed  Google Scholar 

  4. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129. https://doi.org/10.1016/j.bios.2017.12.031

    Article  CAS  PubMed  Google Scholar 

  5. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14(3):271. https://xs.scihub.ltd/10.1038/nmat4170–279

    Article  CAS  Google Scholar 

  6. Shi X, Zheng S, Wu ZS, Bao X (2018) Recent advances of graphene-based materials for high-performance and new-concept supercapacitors. J Energy Chem 27(1):25–42. https://doi.org/10.1016/j.jechem.2017.09.034

    Article  Google Scholar 

  7. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, Liang L, Louie SG, Ringe E, Zhou W, Kim SS, Naik RR, Sumpter BG, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller JA, Schaak RE, Terrones M, Robinson JA (2015) Recent advances in two-dimensional materials beyond grapheme. ACS Nano 9(12):11509–11539. https://doi.org/10.1021/acsnano.5b05556

    Article  CAS  PubMed  Google Scholar 

  8. Meng Z, Stolz RM, Mendecki L, Mirica KA (2019) Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem Rev 119(1):478–598. https://doi.org/10.1021/acs.chemrev.8b00311

    Article  CAS  PubMed  Google Scholar 

  9. Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M (2015) Cu3(hexaiminotriphenylene)2: an electrically conductive 2D metal–organic framework for chemiresistive sensing. Angew Chem Int Ed 54(14):4349–4352. https://doi.org/10.1002/anie.201411854

    Article  CAS  Google Scholar 

  10. Liu L, Zhou Y, Liu S, Xu M (2018) The applications of metal−organic frameworks in electrochemical sensors. ChemElectroChem 5(1):6–19. https://doi.org/10.1002/celc.201700931

    Article  CAS  Google Scholar 

  11. Zhan G, Zeng HC (2016) Synthesis and functionalization of oriented metal–organic-framework nanosheets: toward a series of 2D catalysts. Adv Funct Mater 26(19):3268–3281. https://doi.org/10.1002/adfm.201505380

    Article  CAS  Google Scholar 

  12. Gao Y, Jin C, Chen M et al (2018) Preparation of porphyrin modified CO9S8 nanocomposites and application for colorimetric biosensing of H2O2. J Porphyrins Phthalocyanines 22(09n10):935–943. https://doi.org/10.1142/S1088424618500918

    Article  CAS  Google Scholar 

  13. Zhao Y, Jiang L, Shangguan L, Mi L, Liu A, Liu S (2018) Synthesis of porphyrin-based two-dimensional metal–organic framework nanodisk with small size and few layers. J Mater Chem A 6(6):2828–2833. https://doi.org/10.1039/C7TA07911G

    Article  CAS  Google Scholar 

  14. Chung H, Barron PM, Novotny RW, Son HT, Hu C, Choe W (2009) Structural variation in porphyrin pillared homologous series: influence of distinct coordination centers for pillars on framework topology. Cryst Growth Des 9(7):33273332–33273332. https://doi.org/10.1021/cg900220g

    Article  CAS  Google Scholar 

  15. Kung CW, Chang TH, Chou LY, Hupp JT, Farha OK, Ho KC (2015) Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem Commun 58:51–56. https://doi.org/10.1016/j.elecom.2015.06.003

    Article  CAS  Google Scholar 

  16. Diaz AF, Castillo JI, Logan JA et al (1981) Electrochemistry of conducting polypyrrole films. J Electroanal Chem Interfacial Electrochem 129(1–2):115–132. https://doi.org/10.1016/S0022-0728(81)80008-3

    Article  CAS  Google Scholar 

  17. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27(6):1117–1123. https://doi.org/10.1002/adma.201404622

    Article  CAS  PubMed  Google Scholar 

  18. Renner FU, Stierle A, Dosch H, Kolb DM, Lee TL, Zegenhagen J (2006) Initial corrosion observed on the atomic scale. Nature 439(7077):707. https://xs.scihub.ltd/10.1038/nature04465–710

    Article  CAS  Google Scholar 

  19. Wang G, Huang B, Xiao L, Ren Z, Chen H, Wang D, Abruña HD, Lu J, Zhuang L (2014) Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. J.Am.Chem.Soc. 136(27):9643–9649. https://doi.org/10.1021/ja503315s

    Article  CAS  PubMed  Google Scholar 

  20. Chen KJ, Pillai KC, Rick J et al (2012) Bimetallic PtM (M= Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosens Bioelectron 33(1):120–127. https://doi.org/10.1016/j.bios.2011.12.037

    Article  CAS  PubMed  Google Scholar 

  21. Bai Z, Dong W, Ren Y, Zhang C, Chen Q (2018) Preparation of nano Au and Pt alloy microspheres decorated with reduced graphene oxide for nonenzymatic hydrogen peroxide nsing. Langmuir 34(6):2235–2244. https://doi.org/10.1021/acs.langmuir.7b02626

    Article  CAS  PubMed  Google Scholar 

  22. Wang D, Huang B, Li Y (2019) Double signal amplification through a functionalized nanoporous Au–Ag alloy microwire and Au nanoparticles: development of an electrochemical˙ OH sensor based on a self-assembled layer of 6-(ferrocenyl) hexanethiol. Chem Commun 55(17):2425–2428. https://doi.org/10.1039/C8CC08420C

    Article  CAS  Google Scholar 

  23. Ma J, Bai W, Zheng J (2019) Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets. Microchim Acta 186(7):482 https://xs.scihub.ltd/10.1007/s00604-019-3551-1

    Article  Google Scholar 

  24. Wang P, Zheng Y, Li B (2013) Preparation and electrochemical properties of polypyrrole/graphite oxide composites with various feed ratios of pyrrole to graphite oxide. Synth Met 166:33–39. https://doi.org/10.1016/j.synthmet.2013.01.002

    Article  CAS  Google Scholar 

  25. Liu M, Zhou W, Wang T, Wang D, Liu L, Ye J (2016) High performance Au–Cu alloy for enhanced visible-light water splitting driven by coinage metals. Chem Commun 52(25):4694–4697. https://doi.org/10.1039/C6CC00717A

    Article  CAS  Google Scholar 

  26. Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H (2012) Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 134(40):16524–16527. https://doi.org/10.1021/ja307953m

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Bian L, Zhou P, Tang J, Tang W (2013) Core–sheath structured bacterial cellulose/polypyrrole nanocomposites with excellent conductivity as supercapacitors. J Mater Chem A 1(3):578–584. https://doi.org/10.1039/C2TA00040G

    Article  CAS  Google Scholar 

  28. Wang N, Han Y, Xu Y, Gao C, Cao X (2014) Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem 87(1):457–463. https://doi.org/10.1021/ac502682n

    Article  CAS  PubMed  Google Scholar 

  29. Jia W, Guo M, Zheng Z, Yu T, Rodriguez EG, Wang Y, Lei Y (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: toward H2O2 detection. J. Electroanal. Chem. 625(1):27–32. https://doi.org/10.1016/j.jelechem.2008.09.020

    Article  CAS  Google Scholar 

  30. Gu T, Hasebe Y (2006) DNA–Cu (II) poly (amine) complex membrane as novel catalytic layer for highly sensitive amperometric determination of hydrogen peroxide. Biosens Bioelectron 21(11):2121–2128. https://doi.org/10.1016/j.bios.2005.10.007

    Article  CAS  PubMed  Google Scholar 

  31. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode[J]. J. Electroanal. Chem. 612(2):157–163. https://doi.org/10.1016/j.jelechem.2007.09.026

    Article  CAS  Google Scholar 

  32. Maduraiveeran G, Ramaraj R (2007) Gold nanoparticles embedded in silica sol–gel matrix as an amperometric sensor for hydrogen peroxide. J. Electroanal. Chem. 608(1):52–58. https://doi.org/10.1016/j.jelechem.2007.05.009

    Article  CAS  Google Scholar 

  33. Huo H, Guo C, Li G, Han X, Xu C (2014) Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv 4(39):20459–20465. https://doi.org/10.1039/C4RA02390K

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the National Natural Science Foundation of China (No. 21575113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 472 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Zheng, J. Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal-organic framework nanosheets. Microchim Acta 187, 389 (2020). https://doi.org/10.1007/s00604-020-04355-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04355-y

Keywords

Navigation