Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen

Abstract

A magnetic bead (MB)-based sandwich biorecognition reactions is combined with a gold nanoprobe-induced homogenous synthesis of molybdophosphate to develop a novel bioassay method for the electrochemical detection of the tumor biomarker of carcinoembryonic antigen (CEA). The nanoprobe is prepared through the specific loading of numerous alkaline phosphatase (ALP)-functionalized gold nanoparticles (Au NPs) on a double-stranded DNA (dsDNA) produced by the CEA aptamer-triggered hybridization chain reaction (HCR). Both the large amounts of PO43− produced by the ALP catalytic hydrolysis of pyrophosphate and the phosphate backbones of dsDNA can react with the added MoO42− to generate electroactive molybdophosphates. So, the gold nanoprobe was used for signal tracing of the sandwich bioassay of CEA at a constructed antibody-functionalized MB platform. The sensitive electrochemical measurement of molybdophosphate produced from the quantitatively captured nanoprobes at a carbon nanotube-modified electrode (measured at about 0.12 V vs. Ag/AgCl, 3 M KCl) enabled the convenient signal transduction of the method. Due to the dually enhanced synthesis of molybdophosphate by the HCR and multi-enzyme Au NP nanotags, this method shows a wide linear range from 0.05 pg mL−1 to 10 ng mL−1 along with a low detection limit of 0.027 pg mL−1. In addition, the MB-based biorecognition reaction and the homogeneous synthesis of molybdophosphate are much convenient in manipulations. These excellent performances decide the extensive application potentials of the method.

A magnetic bead-based bioassay method was simply developed for the electrochemical detection of carcinoembryonic antigen. The dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction (HCR) and enzyme nanotags and the sensitive electrochemical measurement of molybdophosphate at a carbon nanotube (CNT)-electrode enable ultrasensitive signal transduction of the method.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Labib M, Sargent EH, Kelley SO (2016) Electrochemical methods for the analysis of clinically relevant biomolecules. Chem Rev 116:9001–9090

    CAS  Article  Google Scholar 

  2. 2.

    Ghorbani F, Abbaszadeh H, Mehdizadeh A, Ebrahimi-Warkiani M, Rashidi MR (2019) Biosensors and nanobiosensors for rapid detection of autoimmune diseases: a review. Microchim Acta 186:838

    CAS  Article  Google Scholar 

  3. 3.

    Devi RV, Doble M, Verma RS (2015) Nanomaterials for early detection of cancer biomarker with special emphasis on gold nanoparticles in immunoassays/sensors. Biosens Bioelectron 68:688–698

    Article  Google Scholar 

  4. 4.

    Song S, Qin Y, He Y, Huang Q, Fan C, Chen HY (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39:4234–4243

    CAS  Article  Google Scholar 

  5. 5.

    Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    CAS  Article  Google Scholar 

  6. 6.

    Luo Y, Wang Y, Yan H, Wu Y, Zhu C, Du D, Lin Y (2018) SWCNTs@GQDs composites as nanocarriers for enzyme-free dual-signal amplification electrochemical immunoassay of cancer biomarker. Anal Chim Acta 1042:44–51

    CAS  Article  Google Scholar 

  7. 7.

    Xu L, Liu Z, Lei S, Huang D, Zou L, Ye B (2019) A sandwich-type electrochemical aptasensor for the carcinoembryonic antigen via biocatalytic precipitation amplification and by using gold nanoparticle composites. Microchim Acta 186:473

    Article  Google Scholar 

  8. 8.

    Parsa SF, Vafajoo A, Rostami A, Salarian R, Rabiee M, Rabiee N, Rabiee G, Tahririd M, Yadegari A, Vashaee D, Tayebi L, Hamblin MR (2018) Early diagnosis of disease using microbead array technology: a review. Anal Chim Acta 1032:1–17

    CAS  Article  Google Scholar 

  9. 9.

    Li B, Lai G, Lin B, Yu A, Yang N (2018) Enzyme-induced biomineralization of cupric subcarbonate for ultrasensitive colorimetric immunosensing of carcinoembryonic antigen. Sensors Actuators B Chem 262:789–795

    CAS  Article  Google Scholar 

  10. 10.

    Jie G, Ge J, Gao X, Li C (2018) Amplified electrochemiluminescence detection of CEA based on magnetic Fe3O4@ Au nanoparticles-assembled Ru@SiO2 nanocomposites combined with multiple cycling amplification strategy. Biosens Bioelectron 118:115–121

    CAS  Article  Google Scholar 

  11. 11.

    Liu Z, Lei S, Zou L, Li G, Xu L, Ye B (2019) A label-free and double recognition-amplification novel strategy for sensitive and accurate carcinoembryonic antigen assay. Biosens Bioelectron 131:113–118

    CAS  Article  Google Scholar 

  12. 12.

    He Y, Chen S, Huang L, Wang Z, Wu Y, Fu F (2018) Combination of magnetic-beads-based multiple metal nanoparticles labeling with hybridization chain reaction amplification for simultaneous detection of multiple cancer cells with inductively coupled plasma mass spectrometry. Anal Chem 91:1171–1177

    Article  Google Scholar 

  13. 13.

    Li B, Qin L, Zhou J, Cai X, Lai G, Yu A (2019) Hybridization chain reaction-enhanced enzyme biomineralization for ultrasensitive colorimetric biosensing of a protein biomarker. Analyst 144:5003–5009

    CAS  Article  Google Scholar 

  14. 14.

    Yu X, Zhang ZL, Zheng SY (2015) Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens Bioelectron 66:520–526

    CAS  Article  Google Scholar 

  15. 15.

    Chen X, Wang Y, Zhang J, Zhang Y (2019) DNA concatemer-silver nanoparticles as a signal probe for electrochemical prostate-specific antigen detection. Analyst 144:6313–6320

    CAS  Article  Google Scholar 

  16. 16.

    Liu Y, Ding Y, Gao Y, Liu R, Hu X, Lv Y (2018) Enzyme-free amplified DNA assay: five orders of linearity provided by metal stable isotope detection. Chem Commun 54:13782–13785

    CAS  Article  Google Scholar 

  17. 17.

    Xie S, Yuan Y, Chai Y, Yuan R (2015) Tracing phosphate ions generated during loop-mediated isothermal amplification for electrochemical detection of nosema bombycis genomic DNA PTP1. Anal Chem 87:10268–10274

    CAS  Article  Google Scholar 

  18. 18.

    Xu J, Cao X, Xia J, Gong S, Wang Z, Lu L (2016) Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose. Anal Chim Acta 934:44–51

    CAS  Article  Google Scholar 

  19. 19.

    Tang Q, Zhang L, Tan X, Jiao L, Wei Q, Li H (2019) Bioinspired synthesis of organic-inorganic hybrid nanoflowers for robust enzyme-free electrochemical immunoassay. Biosens Bioelectron 133:94–99

    CAS  Article  Google Scholar 

  20. 20.

    Shen C, Li X, Rasooly A, Guo L, Zhang K, Yang M (2016) A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates. Biosens Bioelectron 85:220–225

    CAS  Article  Google Scholar 

  21. 21.

    Hua X, Zhou X, Guo S, Zheng T, Yuan R, Xu W (2019) Determination of Alzheimer biomarker DNA by using an electrode modified with in-situ precipitated molybdophosphate catalyzed by alkaline phosphatase-encapsulated DNA hydrogel and target recycling amplification. Microchim Acta 186:158

    Article  Google Scholar 

  22. 22.

    Hu L, Hu S, Guo L, Shen C, Yang M, Rasooly A (2017) DNA generated electric current biosensor. Anal Chem 89:2547–2552

    CAS  Article  Google Scholar 

  23. 23.

    Feng K, Liu J, Deng L, Yu H, Yang M (2018) Amperometric detection of microRNA based on DNA-controlled current of a molybdophosphate redox probe and amplification via hybridization chain reaction. Microchim Acta 185:28

    Article  Google Scholar 

  24. 24.

    Li X, Shen C, Yang M, Rasooly A (2018) Polycytosine DNA electric-current-generated immunosensor for electrochemical detection of human epidermal growth factor receptor 2 (HER2). Anal Chem 90:4764–4769

    CAS  Article  Google Scholar 

  25. 25.

    Si Z, Xie B, Chen Z, Tang C, Li T, Yang M (2017) Electrochemical aptasensor for the cancer biomarker CEA based on aptamer induced current due to formation of molybdophosphate. Microchim Acta 184:3215–3221

    CAS  Article  Google Scholar 

  26. 26.

    Nie Y, Yang M, Ding Y (2018) Gold nanoparticle enhanced hybridization chain reaction as a method for signal amplification. Application to electrochemical immunodetection of the ovarian cancer biomarker carbohydrate antigen 125. Microchim Acta 185:331

    Article  Google Scholar 

  27. 27.

    Yi J, Liu Z, Liu J, Liu H, Xia F, Tian D, Zhou C (2020) A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection. Biosens Bioelectron 148:111827

    CAS  Article  Google Scholar 

  28. 28.

    Li B, Lai G, Zhang H, Hu S, Yu A (2017) Copper chromogenic reaction based colorimetric immunoassay for rapid and sensitive detection of a tumor biomarker. Anal Chim Acta 963:106–111

    CAS  Article  Google Scholar 

  29. 29.

    Lai G, Zheng M, Hu W, Yu A (2017) One-pot loading high-content thionine on polydopamine-functionalized mesoporous silica nanosphere for ultrasensitive electrochemical immunoassay. Biosens Bioelectron 95:15–20

    CAS  Article  Google Scholar 

  30. 30.

    Karami K, Bayat P, Allafchian AR, Amiri R, Rezaei B, Laurents DV (2019) A new glucose biosensor based on nickel/KH550 nanocomposite deposited on the GCE: an electrochemical study. J Electroanal Chem 839:9–15

    CAS  Article  Google Scholar 

  31. 31.

    Lai G, Zhang H, Yong J, Yu A (2013) In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay. Biosens Bioelectron 47:178–183

    CAS  Article  Google Scholar 

  32. 32.

    Zhao L, Li C, Qi H, Gao Q, Zhang C (2016) Electrochemical lectin-based biosensor array for detection and discrimination of carcinoembryonic antigen using dual amplification of gold nanoparticles and horseradish peroxidase. Sensors Actuators B Chem 235:575–582

    CAS  Article  Google Scholar 

  33. 33.

    Yang Z, Lan Q, Li J, Wu J, Tang Y, Hu X (2017) Efficient streptavidin-functionalized nitrogen-doped graphene for the development of highly sensitive electrochemical immunosensors. Biosens Bioelectron 89:312–318

    CAS  Article  Google Scholar 

  34. 34.

    Nakhjavani SA, Afsharan H, Khalilzadeh B, Ghahremani MH, Carrara S, Omidi Y (2019) Gold and silver bio/nano-hybrids-based electrochemical immunosensor for ultrasensitive detection of carcinoembryonic antigen. Biosens Bioelectron 141:111439

    Article  Google Scholar 

  35. 35.

    Jia Y, Li Y, Zhang S, Wang P, Liu Q, Dong Y (2020) Mulberry-like Au@PtPd porous nanorods composites as signal amplifers for sensitive detection of CEA. Biosens Bioelectron 149:111842

    CAS  Article  Google Scholar 

  36. 36.

    Akter R, Rhee CK, Rahman MA (2014) Sensitivity enhancement of an electrochemical immunosensor through the electrocatalysis of magnetic bead-supported non-enzymatic labels. Biosens Bioelectron 54:351–357

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21475033) and Science and Technology Foundation for Excellent Creative Research Group of Hubei Provincial Department of Education (T201810).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Guosong Lai or Aimin Yu.

Ethics declarations

All serum sample experiments were approved by the Ethics Committee of Hubei Normal University, and informed consent was obtained from human participants of this study.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 378 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, X., Lv, F., Lai, G. et al. Dually enhanced homogenous synthesis of molybdophosphate by hybridization chain reaction and enzyme nanotags for the electrochemical bioassay of carcinoembryonic antigen. Microchim Acta 187, 361 (2020). https://doi.org/10.1007/s00604-020-04342-3

Download citation

Keywords

  • Biosensors
  • Protein biomarker
  • Hybridization chain reaction
  • Electroanalytical chemistry
  • Molybdophosphate