Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples

Abstract

For the first time, dual metal ions (Ti4+-Zr4+) were successfully modified into the channel of magnetic mesoporous silica to obtain an affinity probe for highly selective capture of endogenous phosphopeptides in biological samples. The newly prepared Fe3O4@mSiO2@Ti4+-Zr4+ composites possessed the advantages of ordered mesoporous channels, superparamagnetism, and enhanced affinity properties of dual metal ions of Ti4+ and Zr4+. The phosphopeptide enrichment efficiency of the Fe3O4@mSiO2@Ti4+-Zr4+ composite was investigated, and the result indicated an ultrahigh size exclusive ability (weight ratio of β-casein tryptic digests, BSA, and α-casein protein reached up to 1:1000:1000). Compared to magnetic affinity probes with single metal ions (Fe3O4@mSiO2@Ti4+, Fe3O4@mSiO2@Zr4+), the composite possessed stronger specificity, higher sensitivity, and better efficiency; and more importantly, it showed much enhanced enrichment ability towards both mono- and multi-phosphorylated peptides. Additionally, by utilizing the Fe3O4@mSiO2@Ti4+-Zr4+ affinity probe, a total number of 104 endogenous phosphopeptides including 95 mono-phosphopeptides and 9 multi-phosphopeptides were captured and identified from human saliva, indicating the great potential for the application of the novel probe for the peptidome analysis in the future.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    La Barbera G, Capriotti AL, Cavaliere C, Ferraris F, Laus M, Piovesana S, Sparnacci K, Laganà A (2018) Development of an enrichment method for endogenous phosphopeptide characterization in human serum. Anal Bioanal Chem 410:1177–1185

    Article  Google Scholar 

  2. 2.

    Marshall J, Kupchak P, Zhu W, Yantha J, Vrees T, Furesz S, Jacks K, Smith C, Kireeva I, Zhang R, Takahashi M, Stanton E, Jackowski G (2003) Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res 2:361–372

    CAS  Article  Google Scholar 

  3. 3.

    Dallas DC, Guerrero A, Parker EA, Robinson RC, Gan J, German JB, Barile D, Lebrilla CB (2015) Current peptidomics: applications, purification, identification, quantification, and functional analysis. Proteomics 15:1026–1038

    CAS  Article  Google Scholar 

  4. 4.

    Liu Q, Sun N, Gao M, Deng C-h (2018) Magnetic binary metal–organic framework as a novel affinity probe for highly selective capture of endogenous phosphopeptides. ACS Sustain Chem Eng 6:4382–4389

    CAS  Article  Google Scholar 

  5. 5.

    Beltran L, Cutillas PR (2012) Advances in phosphopeptide enrichment techniques for phosphoproteomics. Amino Acids 43:1009–1024

    CAS  Article  Google Scholar 

  6. 6.

    Su J, He X, Chen L, Zhang Y (2018) Adenosine phosphate functionalized magnetic mesoporous graphene oxide nanocomposite for highly selective enrichment of phosphopeptides. ACS Sustain Chem Eng 6:2188–2196

    CAS  Article  Google Scholar 

  7. 7.

    Boersema PJ, Mohammed S, Heck AJR (2009) Phosphopeptide fragmentation and analysis by mass spectrometry. J Mass Spectrom 44:861–878

    CAS  Article  Google Scholar 

  8. 8.

    Lin H, Chen H, Shao X, Deng C (2018) A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Microchim Acta 185:562

    Article  Google Scholar 

  9. 9.

    Li Y, Liu L, Wu H, Deng C (2019) Magnetic mesoporous silica nanocomposites with binary metal oxides core-shell structure for the selective enrichment of endogenous phosphopeptides from human saliva. Anal Chim Acta 1079:111–119

    CAS  Article  Google Scholar 

  10. 10.

    Villanueva J, Philip J, Entenberg D, Chaparro CA, Tanwar MK, Holland EC, Tempst P (2004) Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76:1560–1570

    CAS  Article  Google Scholar 

  11. 11.

    Lan X, Liao D, Wu S, Wang F, Sun J, Tong Z (2015) Rapid purification and characterization of angiotensin converting enzyme inhibitory peptides from lizard fish protein hydrolysates with magnetic affinity separation. Food Chem 182:136–142

    CAS  Article  Google Scholar 

  12. 12.

    Yao J, Sun N, Deng C, Zhang X (2015) Designed synthesis of graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Talanta 150:296–301

    Article  Google Scholar 

  13. 13.

    Yan Y, Zhang X, Deng C (2014) Designed synthesis of titania nanoparticles coated hierarchically ordered macro/mesoporous silica for selective enrichment of phosphopeptides. ACS Appl Mater Interfaces 6:5467–5471

    CAS  Article  Google Scholar 

  14. 14.

    Chen CT, Chen YC (2005) Fe3O4/TiO2 Core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem 77:5912–5919

    CAS  Article  Google Scholar 

  15. 15.

    Yan Y, Zheng Z, Deng C, Zhang X, Yang P (2013) Facile synthesis of Ti4+−immobilized Fe3O4@polydopamine core-shell microspheres for highly selective enrichment of phosphopeptides. Chem Commun 49:5055–5057

    CAS  Article  Google Scholar 

  16. 16.

    Qi D, Mao Y, Lu J, Deng C, Zhang X (2010) Phosphate-functionalized magnetic microspheres for immobilization of Zr4+ ions for selective enrichment of the phosphopeptides. J Chromatogr A 1217:2606–2617

    CAS  Article  Google Scholar 

  17. 17.

    Andersson L, Porath J (1986) Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 154:250–254

    CAS  Article  Google Scholar 

  18. 18.

    Kinoshita E, Kinoshita-Kikuta E, Takiyama K, Koike T (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol Cell Proteomics 5:749–757

    CAS  Article  Google Scholar 

  19. 19.

    Hu Q, Hu S, Zhang Z, Zhou X, Yang S, Zhang Y, Chen X (2011) Fe3+−immobilized nanoparticle-modified capillary for capillary electrophoretic separation of phosphoproteins and non-phosphoproteins. Electrophoresis 32:2867–2873

    CAS  Article  Google Scholar 

  20. 20.

    Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892

    CAS  Article  Google Scholar 

  21. 21.

    Ficarro SB, Adelmant G, Tomar MN, Zhang Y, Cheng VJ, Marto JA (2009) Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal Chem 81:4566–4575

    CAS  Article  Google Scholar 

  22. 22.

    Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, Wu R, Ye M, Zou H (2009) Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides. Anal Chim Acta 636:34–41

    CAS  Article  Google Scholar 

  23. 23.

    Han G, Ye M, Zou H (2008) Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst. 133:1128–1138

    CAS  Article  Google Scholar 

  24. 24.

    Lai ACY, Tsai CF, Hsu CC, Sun YN, Chen YJ (2012) Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun Mass Sp 26:2186–2194

    CAS  Article  Google Scholar 

  25. 25.

    Sun N, Deng C, Li Y, Zhang X (2014) Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. ACS Appl Mater Interfaces 6:11799–11804

    CAS  Article  Google Scholar 

  26. 26.

    Yin P, Wang Y, Li Y, Deng C, Zhang X, Yang P (2012) Preparation of sandwich-structured graphene/mesoporous silica composites with C8-modified pore wall for highly efficient selective enrichment of endogenous peptides for mass spectrometry analysis. Proteomics 12:2784–2791

    CAS  Article  Google Scholar 

  27. 27.

    Zhu GT, Li X-S, Gao Q, Zhao N-W, Yuan B-F, Feng Y-Q (2012) Pseudomorphic synthesis of monodisperse magnetic mesoporous silica microspheres for selective enrichment of endogenous peptides. J Chromatogr A 1224:11–18

    CAS  Article  Google Scholar 

  28. 28.

    Tian R, Zhang H, Ye M, Jiang X, Hu L, Li X, Bao X, Zou H (2010) Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew Chem Int Ed 46:962–965

    Article  Google Scholar 

  29. 29.

    Zhang Q, Xiong Z, Wan H, Chen X, Zou H (2016) Facile preparation of mesoporous carbon-silica-coated graphene for the selective enrichment of endogenous peptides. Talanta 146:272–278

    Article  Google Scholar 

  30. 30.

    Long X-y, Li J-y, Sheng D, Lian H-Z (2016) Low-cost iron oxide magnetic nanoclusters affinity probe for the enrichment of endogenous phosphopeptides in human saliva. RSC Adv 6:96210–96222

    CAS  Article  Google Scholar 

  31. 31.

    Kweon HK, Håkansson K (2006) Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Anal Chem 78:1743–1749

    CAS  Article  Google Scholar 

  32. 32.

    Yao J, Sun N, Wang J, Xie Y, Deng C, Zhang X (2017) Rapid synthesis of titanium(IV)-immobilized magnetic mesoporous silica nanoparticles for endogenous phosphopeptides enrichment. Proteomics 17:1600320

    Article  Google Scholar 

  33. 33.

    Wu Y, Liu Q, Xie Y, Deng C (2018) Core-shell structured magnetic metal-organic framework composites for highly selective enrichment of endogenous N-linked glycopeptides and phosphopeptides. Talanta 190:298–312

    CAS  Article  Google Scholar 

  34. 34.

    Bennick A (1982) Salivary proline-rich proteins. Mol Cell Biochem 45:83–99

    CAS  Article  Google Scholar 

  35. 35.

    Robinovitch MR, Ashley RL, Iversen JM, Vigoren EM, Lamkin M (2001) Parotid salivary basic proline-rich proteins inhibit HIV-I infectivity. Oral Dis 7:86–93

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (21425518, 21405022, and 21675034) and National Basic Research Priorities Program of China (2013CB911201).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Aizhu Miao or Chunhui Deng.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The online version of this article (https://doi.org/) contains supplementary material, which is available to authorized users.

ESM 1

(DOCX 3858 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Li, Y., Miao, A. et al. Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples. Microchim Acta 187, 400 (2020). https://doi.org/10.1007/s00604-020-04323-6

Download citation

Keywords

  • Endogenous phosphopeptide
  • Molecular recognition
  • Magnetic mesoporous probe
  • Dual metal cations affinity