Photocatalytically renewable peptide-based electrochemical impedance method for sensing lipopolysaccharide

Abstract

A peptide (Li5–025)-modified gold nanoparticle (AuNP)/(titania (TiO2) + 5,10,15,20-tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP))/glassy carbon electrode (GCE) was developed for lipopolysaccharide (LPS) determination. This electrode not only performs well in the electrochemical impedance determination of LPS in serum but can also be easily regenerated under light irradiation. Using Fe(CN)63−/4- as a redox probe, LPS recognition can be indicated by the significantly increased electron-transfer resistance (Ret) as a result of the coaction of the increased steric hindrance from the peptide-LPS complex and the electrostatic repulsion between LPS and Fe(CN)63−/4-. The impedimetric signal was acquired in the frequency range 0.1 Hz ~ 100 kHz with an initial voltage of 174 mV and an amplitude of 10 mV. The resistance changes (ΔRet) are linearly related to the LPS concentrations in a broad range (0.1 pg mL−1 ~ 100 ng mL−1) with a low detection limit (0.08 pg mL−1). Importantly, the electrode shows high selectivity to LPS from Escherichia coli O55:B5 compared to other bacterial sources and considerable anti-interference to 0.1% fetal calf serum, demonstrating its potential application in clinically relevant samples. Another highlight is that the AuNP/(TiO2 + TAPP)/GCE surface can be photocatalytically regenerated under light irradiation (50 mW cm−2, 300–2500 nm) without any obvious damage to the electrode microstructure. After simple peptide re-immobilization, the regenerated electrode demonstrates LPS response similar to the peptide less one, and the deviation is only 2.89% after 5-cycle reuse.

A peptide (Li5–025)-modified AuNP/(TiO2 + TAPP porphine)/GCE was proposed, which not only has excellent electrochemical analytical performances for LPS assay in serum but also can be reused after light irradiation and subsequent peptide re-immobilization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 406(6797):782–787

    CAS  Article  Google Scholar 

  2. 2.

    Liu C, Xu J-y, Qi J-f, Liu Y-j, Kang J-w, Wang H-y, Chen S-y, Huang Z, Lu B (2019) A novel nanobiocomposite sandwich immunosensor based on molecularly imprinted nano-membrane for endotoxin detection. Sensors Actuators B Chem 290:1–8

    CAS  Article  Google Scholar 

  3. 3.

    Voss S, Fischer R, Jung G, Wiesmüller K-H, Brock R (2007) A fluorescence-based synthetic LPS sensor. J Am Chem Soc 129(3):554–561

    CAS  Article  Google Scholar 

  4. 4.

    Rangin M, Basu A (2004) Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J Am Chem Soc 126(16):5038–5039

    CAS  Article  Google Scholar 

  5. 5.

    Lan M, Wu J, Liu W, Zhang W, Ge J, Zhang H, Sun J, Zhao W, Wang P (2012) Copolythiophene-derived colorimetric and fluorometric sensor for visually supersensitive determination of lipopolysaccharide. J Am Chem Soc 134(15):6685–6694

    CAS  Article  Google Scholar 

  6. 6.

    Kalita P, Dasgupta A, Sritharan V, Gupta S (2015) Nanoparticle–drug bioconjugate as dual functional affinity ligand for rapid point-of-care detection of endotoxin in water and serum. Anal Chem 87(21):11007–11012

    CAS  Article  Google Scholar 

  7. 7.

    Kim S-E, Su W, Cho M, Lee Y, Choe W-S (2012) Harnessing aptamers for electrochemical detection of endotoxin. Anal Biochem 424(1):12–20

    CAS  Article  Google Scholar 

  8. 8.

    Duan Y, Wang N, Huang Z, Dai H, Xu L, Sun S, Ma H, Lin M (2020) Electrochemical endotoxin aptasensor based on a metal-organic framework labeled analytical platform. Mater Sci Eng C 108:110501

    CAS  Article  Google Scholar 

  9. 9.

    Pourmadadi M, Shayeh JS, Omidi M, Yazdian F, Alebouyeh M, Tayebi L (2019) A glassy carbon electrode modified with reduced graphene oxide and gold nanoparticles for electrochemical aptasensing of lipopolysaccharides from Escherichia coli bacteria. Microchim Acta 186(12):787

    CAS  Article  Google Scholar 

  10. 10.

    Ma L, Sun N, Meng Y, Tu C, Cao X, Wei Y, Chu L, Diao A (2018) Harnessing the affinity of magnetic nanoparticles toward dye-labeled DNA and developing it as an universal aptasensor revealed by lipopolysaccharide detection. Anal Chim Acta 1036:107–114

    CAS  Article  Google Scholar 

  11. 11.

    Xu W, Tian J, Shao X, Zhu L, Huang K, Luo Y (2017) A rapid and visual aptasensor for lipopolysaccharides detection based on the bulb-like triplex turn-on switch coupled with HCR-HRP nanostructures. Biosens Bioelectron 89:795–801

    CAS  Article  Google Scholar 

  12. 12.

    Osborne SE, Ellington AD (1997) Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev 97(2):349–370

    CAS  Article  Google Scholar 

  13. 13.

    Liu F, Mu J, Wu X, Bhattacharjya S, Yeow EKL, Xing B (2014) Peptide–perylene diimide functionalized magnetic nano-platforms for fluorescence turn-on detection and clearance of bacterial lipopolysaccharides. Chem Commun 50(47):6200–6203

    CAS  Article  Google Scholar 

  14. 14.

    Matsumoto M, Horiuchi Y, Yamamoto A, Ochiai M, Niwa M, Takagi T, Omi H, Kobayashi T, Suzuki M-M (2010) Lipopolysaccaride-binding peptides obtained by phage display method. J Microbiol Methods 82(1):54–58

    CAS  Article  Google Scholar 

  15. 15.

    Suzuki MM, Matsumoto M, Yamamoto A, Ochiai M, Horiuchi Y, Niwa M, Omi H, Kobayashi T, Takagi T (2010) Molecular design of LPS-binding peptides. J Microbiol Methods 83(2):153–155

    CAS  Article  Google Scholar 

  16. 16.

    Liu T, Meng F, Cheng W, Sun H, Luo Y, Tang Y, Miao P (2017) Preparation of a peptide-modified electrode for capture and voltammetric determination of endotoxin. ACS Omega 2(6):2469–2473

    CAS  Article  Google Scholar 

  17. 17.

    Hu L, Huo K, Chen R, Gao B, Fu J, Chu PK (2011) Recyclable and high-sensitivity electrochemical biosensing platform composed of carbon-doped TiO2 nanotube arrays. Anal Chem 83(21):8138–8144

    CAS  Article  Google Scholar 

  18. 18.

    Xu J-Q, Liu Y-L, Wang Q, Duo H-H, Zhang X-W, Li Y-T, Huang W-H (2015) Photocatalytically renewable micro-electrochemical sensor for real-time monitoring of cells. Angew Chem Int Ed 54(48):14402–14406

    CAS  Article  Google Scholar 

  19. 19.

    Wang Y-W, Liu Y-L, Xu J-Q, Qin Y, Huang W-H (2018) Stretchable and photocatalytically renewable electrochemical sensor based on sandwich nanonetworks for real-time monitoring of cells. Anal Chem 90(10):5977–5981

    CAS  Article  Google Scholar 

  20. 20.

    Wang X, Caruso RA (2011) Enhancing photocatalytic activity of titania materials by using porous structures and the addition of gold nanoparticles. J Mater Chem 21(1):20–28

    Article  Google Scholar 

  21. 21.

    Yang L, Sun H, Wang X, Yao W, Zhang W, Jiang L (2019) An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles. Microchim Acta 186(5):308

    Article  Google Scholar 

  22. 22.

    Yang LM, Han J, Liu W, Li JQ, Jiang L (2015) Conversion of inhibition biosensing to substrate-like biosensing for quinalphos selective detection. Anal Chem 87(10):5270–5277

    CAS  Article  Google Scholar 

  23. 23.

    Wang P, Wang J, Wang X, Yu H, Yu J, Lei M, Wang Y (2013) One-step synthesis of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl Catal B 132-133:452–459

    CAS  Article  Google Scholar 

  24. 24.

    Zhang L, Qi H, Zhao Y, Zhong L, Zhang Y, Wang Y, Xue J, Li Y (2019) Au nanoparticle modified three-dimensional network PVA/RGO/TiO2 composite for enhancing visible light photocatalytic performance. Appl Surf Sci 498:143855

    CAS  Article  Google Scholar 

  25. 25.

    Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326

    CAS  Article  Google Scholar 

  26. 26.

    Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol−gel network. Anal Chem 74(9):2217–2223

    CAS  Article  Google Scholar 

  27. 27.

    Shen W-J, Zhuo Y, Chai Y-Q, Yuan R (2015) Cu-based metal–organic frameworks as a catalyst to construct a ratiometric electrochemical aptasensor for sensitive lipopolysaccharide detection. Anal Chem 87(22):11345–11352

    CAS  Article  Google Scholar 

  28. 28.

    Iturri J, García-Fernández L, Reuning U, García AJ, Ad C, Salierno MJ (2015) Synchronized cell attachment triggered by photo-activatable adhesive ligands allows QCM-based detection of early integrin binding. Sci Rep 5(1):9533

    CAS  Article  Google Scholar 

  29. 29.

    Wu J, Park JP, Dooley K, Cropek DM, West AC, Banta S (2011) Rapid development of new protein biosensors utilizing peptides obtained via phage display. PLoS One 6(10)

  30. 30.

    Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H (2001) Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: a quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Anal Chem 73(24):5796–5804

    CAS  Article  Google Scholar 

  31. 31.

    Bhunia A, Mohanram H, Domadia PN, Torres J, Bhattacharjya S (2009) Designed β-boomerang antiendotoxic and antimicrobial peptides: structures and activities in lipopolysaccharide. J Biol Chem 284(33):21991–22004

    CAS  Article  Google Scholar 

  32. 32.

    Ryder MP, Wu X, McKelvey GR, McGuire J, Schilke KF (2014) Binding interactions of bacterial lipopolysaccharide and the cationic amphiphilic peptides polymyxin B and WLBU2. Colloids Surf B 120:81–87

    CAS  Article  Google Scholar 

  33. 33.

    Nileback E, Westberg F, Deinum J, Svedhem S (2010) Viscoelastic sensing of conformational changes in plasminogen induced upon binding of low molecular weight compounds. Anal Chem 82(20):8374–8376

    CAS  Article  Google Scholar 

  34. 34.

    McCubbin GA, Praporski S, Piantavigna S, Knappe D, Hoffmann R, Bowie JH, Separovic F, Martin LL (2011) QCM-D fingerprinting of membrane-active peptides. Eur Biophys J 40(4):437–446

    CAS  Article  Google Scholar 

  35. 35.

    Lu NY, Yang K, Li JL, Yuan B, Ma YQ (2013) Vesicle deposition and subsequent membrane-melittin interactions on different substrates: a QCM-D experiment. Biochim Biophys Acta Biomembr 1828(8):1918–1925

    CAS  Article  Google Scholar 

  36. 36.

    Wang N, Dai H, Sai L, Ma H, Lin M (2019) Copper ion-assisted gold nanoparticle aggregates for electrochemical signal amplification of lipopolysaccharide sensing. Biosens Bioelectron 126:529–534

    CAS  Article  Google Scholar 

  37. 37.

    Shen W-J, Zhuo Y, Chai Y-Q, Yuan R (2016) Ce-based metal-organic frameworks and DNAzyme-assisted recycling as dual signal amplifiers for sensitive electrochemical detection of lipopolysaccharide. Biosens Bioelectron 83:287–292

    CAS  Article  Google Scholar 

  38. 38.

    Xie S, Zhang J, Teng L, Yuan W, Tang Y, Peng Q, Tang Q (2019) Electrochemical detection of lipopolysaccharide based on rolling circle amplification assisted formation of copper nanoparticles for enhanced resistance generation. Sensors Actuators B 301:127072

    CAS  Article  Google Scholar 

  39. 39.

    Lerouge I, Vanderleyden J (2002) O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol Rev 26(1):17–47

    CAS  Article  Google Scholar 

  40. 40.

    Mazgaeen L, Gurung P (2020) Recent advances in lipopolysaccharide recognition systems. Int J Mol Sci 21(2)

  41. 41.

    Xia Y, Ye J, Tan K, Wang J, Yang G (2013) Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism–glucose oxidase system. Anal Chem 85(13):6241–6247

    CAS  Article  Google Scholar 

  42. 42.

    McIntyre CA, Reinin G (2009) Reduction in endotoxin levels after performing the prepare for aseptic sort procedure on the BD FACSAria II flow cytometer. BD Biosci Appl Note

  43. 43.

    Seigel RR, Harder P, Dahint R, Grunze M, Josse F, Mrksich M, Whitesides GM (1997) On-line detection of nonspecific protein adsorption at artificial surfaces. Anal Chem 69(16):3321–3328

    CAS  Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 31871878), Shandong Provincial Natural Science Foundation, China (No. ZR2018BC057), the Fundamental Research Funds for the Central Universities (No. 19CX02041A), and Key R&D Program of Shandong Province (No. 2018GSF118032).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Limin Yang or Lei Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 56551 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Gao, Y., Fang, K. et al. Photocatalytically renewable peptide-based electrochemical impedance method for sensing lipopolysaccharide. Microchim Acta 187, 349 (2020). https://doi.org/10.1007/s00604-020-04321-8

Download citation

Keywords

  • Titanium dioxide (TiO2)
  • 5,10,15,20-Tetrakis(4-aminophenyl)-21H,23H-porphine (TAPP)
  • Gold nanoparticle (AuNP)
  • Electrochemical impedance spectroscopy (EIS)
  • Renewable electrode surface