Analysis of glycan expression on cell surfaces by using a glassy carbon electrode modified with MnO2 nanosheets and DNA-generated electrochemical current

Abstract

Electrochemical assay for analysis of cell surface glycan expression is reported. Mannose on human breast cancer cells (type MCF-7) is selected as the glycan model. Gold nanoparticles are modified with binding aptamer for MCF-7 cells and act as electrochemical probe. The analysis of cell surface glycan expression follows a traditional sandwich protocol. Concanavalin A that can specifically recognize mannose is immobilized onto MnO2 nanosheets modified electrode for the capture of MCF-7 cells. Then, the modified gold nanoparticles are immobilized onto the electrode via the binding between MCF-7 cell and aptamer on the gold nanoparticles. The aptamer on the gold nanoparticles reacts with molybdate. More specifically, the reaction of the phosphate backbone of aptamer with molybdate results in the formation of a redox-active molybdophosphate precipitate and generates an electrochemical current. The current intensity at 0.20 V (vs. Ag/AgCl) is recorded to test the linear range of the assay. The assay shows an obvious response to MCF-7 cells with a wide linear range from 1.0 × 103 to 1.0 × 106 cells mL−1 and a limit of detection down to 300 cells mL−1. The assay can be used to selectively monitor the change of mannose expression on cell surfaces upon the treatment with the N-glycan inhibitor.

Schematic of an electrochemical assay for analysis of cell surface glycan expression of MCF-7 cancer cells

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Dang L, Jia L, Zhi Y, Li P, Zhao T, Zhu B, Lan R, Hu Y, Zhang H, Sun S (2019) Mapping human N-linked glycoproteins and glycosylation sites using mass spectrometry. Trac- Anal Chem 114:143–150

    CAS  Article  Google Scholar 

  2. 2.

    Li C, Wang L-X (2018) Chemoenzymatic methods for the synthesis of glycoproteins. Chem Rev 118(17):8359–8413

    CAS  Article  Google Scholar 

  3. 3.

    Woods RJ (2018) Predicting the structures of glycans, glycoproteins, and their complexes. Chem Rev 118(17):8005–8024

    CAS  Article  Google Scholar 

  4. 4.

    Kulkarni SS, Wang C-C, Sabbavarapu NM, Podilapu AR, Liao P-H, Hung S-C (2018) "One-pot" protection, glycosylation, and protection-glycosylation strategies of carbohydrates. Chem Rev 118(17):8025–8104

    CAS  Article  Google Scholar 

  5. 5.

    Pohl NLB (2018) Introduction: carbohydrate chemistry. Chem Rev 118(17):7865–7866

    CAS  Article  Google Scholar 

  6. 6.

    Wang C, Lu Y, Han J, Jin W, Li L, Zhang Y, Song X, Huang L, Wang Z (2018) Simultaneous release and labeling of O- and N-Glycans allowing for rapid glycomic analysis by online LC-UV-ESI-MS/MS. J Proteome Res 17(7):2345–2357

    CAS  Article  Google Scholar 

  7. 7.

    Chen Z, Liu Y, Wang Y, Zhao X, Li J (2013) Dynamic evaluation of cell surface N-glycan expression via an Electrogenerated Chemiluminescence biosensor based on concanavalin A-integrating gold-nanoparticle-modified Ru(bpy)(3)(2+)-doped silica Nanoprobe. Anal Chem 85(9):4431–4438

    CAS  Article  Google Scholar 

  8. 8.

    Luo Z, Wang Y, Xu Y, Wang X, Huang Z, Chen J, Li Y, Duan Y (2019) Ultrasensitive U-shaped fiber optic LSPR cytosensing for label-free and in situ evaluation of cell surface N-glycan expression. Sens Actuator B Chem 284:582–588

    CAS  Article  Google Scholar 

  9. 9.

    Ge S, Lan F, Lang L, Ren N, Li L, Liu H, Yan M, Yu J (2017) Ultrasensitive photoelectrochemical biosensing of cell surface N-glycan expression based on the enhancement of nanogold-assembled mesoporous silica amplified by graphene quantum dots and hybridization chain reaction. ACS Appl Mater Interfaces 9(8):6670–6678

    CAS  Article  Google Scholar 

  10. 10.

    Zhang X, Lu W, Shen J, Jiang Y, Han E, Dong X, Huang J (2015) Carbohydrate derivative-functionalized biosensing toward highly sensitive electrochemical detection of cell surface glycan expression as cancer biomarker. Biosens Bioelectron 74:291–298

    CAS  Article  Google Scholar 

  11. 11.

    Cao JT, Chen ZX, Hao XY, Zhang PH, Zhu JJ (2012) Quantum dots-based immunofluorescent microfluidic chip for the analysis of glycan expression at single-cells. Anal Chem 84(22):10097–10104

    CAS  Article  Google Scholar 

  12. 12.

    Zhang JJ, Cheng FF, Zheng TT, Zhu JJ (2017) Versatile aptasensor for electrochemical quantification of cell surface glycan and naked-eye tracking glycolytic inhibition in living cells. Biosens Bioelectron 89:937–945

    CAS  Article  Google Scholar 

  13. 13.

    Liang L, Lan F, Li L, Ge S, Yu J, Ren N, Liu H, Yan M (2016) Paper analytical devices for dynamic evaluation of cell surface N-glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification. Biosens Bioelectron 86:756–763

    CAS  Article  Google Scholar 

  14. 14.

    He Y, Li J, Liu Y (2015) Reusable and dual-potential responses Electrogenerated Chemiluminescence biosensor for synchronously cytosensing and dynamic cell surface N-glycan evaluation. Anal Chem 87(19):9777–9785

    CAS  Article  Google Scholar 

  15. 15.

    Cao S, Wang Q, Xiao X, Li T, Yang M (2019) Electrochemical immunoassay for the tumor marker CD25 by coupling magnetic sphere-based enrichment and DNA based signal amplification. Microchim Acta 186(6):352

    Article  Google Scholar 

  16. 16.

    Chai Y, Li X, Yang M (2019) Aptamer based determination of the cancer biomarker HER2 by using phosphate-functionalized MnO2 nanosheets as the electrochemical probe. Microchim Acta 186(5):316

    Article  Google Scholar 

  17. 17.

    Wang G, Wang H, Cao S, Xiang W, Li T, Yang M (2019) Electrochemical determination of the activity and inhibition of telomerase based on the interaction of DNA with molybdate. Microchim Acta 186(2):96

    Article  Google Scholar 

  18. 18.

    Sheng J, Jiang X, Wang L, Yang M, Liu Y-N (2018) Biomimetic mineralization guided one-pot preparation of gold clusters anchored two-dimensional MnO2 nanosheets for fluorometric/magnetic bimodal sensing. Anal Chem 90(4):2926–2932

    CAS  Article  Google Scholar 

  19. 19.

    Chen L, Fu Y, Wang N, Yang A, Li Y, Wu J, Ju H, Yan F (2018) Organic electrochemical transistors for the detection of cell surface glycans. ACS Appl Mater Interfaces 10(22):18470–18477

    CAS  Article  Google Scholar 

  20. 20.

    Liu S, Jiang X, Yang M (2019) Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film. Microchim Acta 186:445

    Article  Google Scholar 

  21. 21.

    Shen CC, Liu SP, Li XQ, Yang MH (2019) Electrochemical detection of circulating tumor cells based on DNA generated electrochemical current and rolling circle amplification. Anal Chem 91:11614–11619

    CAS  Article  Google Scholar 

  22. 22.

    Jiang X, Liu S, Yang M, Rasooly A (2019) Amperometric genosensor for culture independent bacterial count. Sensors Actuators 299:126944

    CAS  Article  Google Scholar 

  23. 23.

    Elbein AD (1987) Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu Rev Biochem 56:497–534

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support of this work by the Program for Innovative Research Team of Huizhou University and the Hunan Provincial Science and Technology Plan Project, China (no. 2016TP1007).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kejun Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, K., Liao, F. & Yang, M. Analysis of glycan expression on cell surfaces by using a glassy carbon electrode modified with MnO2 nanosheets and DNA-generated electrochemical current. Microchim Acta 187, 148 (2020). https://doi.org/10.1007/s00604-019-4084-3

Download citation

Keywords

  • Aptamer
  • Concanavalin A
  • Gold nanoparticle
  • Mannose
  • Molybdate