Gold nanoparticle-based signal enhancement of an aptasensor for ractopamine using liquid crystal based optical imaging


The authors report on a method for the determination of ractopamine (RAC) via liquid crystal (LC) optical imaging and gold nanoparticle-induced signal enhancement. The gold nanoparticles (AuNPs) were blended with the desired concentrations of RAC, and this is found to strongly improve the performance of the assay. The RAC aptamers were immobilized on the self-assembled film of a glass slide for specific recognition of RAC. This causes a homeotropic re-orientation of the LCs. Notably, the aptamers need not be immobilized on the nanoparticles like in other methods. The addition of RAC causes the formation of an AuNP-RAC-aptamer conjugate on the sensing interface. This disrupts the orientation of LCs and results in a change of the polarized images of the LCs. The method has a detection limit as low as 1 pM of RAC.

Schematic presentation of a method for the determination of ractopamine (RAC) using liquid crystal (LC) optical imaging and gold nanoparticle-induced signal enhancement. The aptamers need not be immobilized on the nanoparticles like in other methods.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Crescenzi C, Bayoudh S, Cormack PAG, Klein T, Ensing K (2001) Determination of Clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry. Anal Chem 73(10):2171–2177

    CAS  Article  Google Scholar 

  2. 2.

    Shishani E, Chai SC, Jamokha S, Aznar G, Hoffman MK (2003) Determination of ractopamine in animal tissues by liquid chromatography-fluorescence and liquid chromatography/tandem mass spectrometry. Anal Chim Acta 483(1–2):137–145

    CAS  Article  Google Scholar 

  3. 3.

    Rajkumar M, Li YS, Chen SM (2013) Electrochemical detection of toxic ractopamine and salbutamol in pig meat and human urine samples by using poly taurine/zirconia nanoparticles modified electrodes. Colloids Surf, B 110(10):242–247

    CAS  Article  Google Scholar 

  4. 4.

    Yao X, Yan P, Tang Q, Deng A, Li J (2013) Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification for ultrasensitive detection of clenbuterol. Anal Chim Acta 798(18):82–88

    CAS  Article  Google Scholar 

  5. 5.

    Noel JA, Barstow TJ, Broxterman RM, McCoy GD, Phelps KJ, Gonzalez JM (2016) Effect of Ractopamine-HCL on muscle fiber types and finishing barrow exhaustion. Meat Sci 112:110

    Article  Google Scholar 

  6. 6.

    Ye D, Wu S, Xu J, Jiang R, Zhu F, Ouyang G (2016) Rapid determination of Clenbuterol in pork by direct immersion solid-phase microextraction coupled with gas chromatography-mass spectrometry. J Chromatogr Sci 54(2):112–118

    CAS  PubMed  Google Scholar 

  7. 7.

    Li J, Chen Y, Su YQ, Ding XM, Xia WS, Liu HM, Zhang YB (2017) Single-step multiresidue determination of β-lactam antibiotics and β-agonists in porcine muscle by liquid chromatography-tandem mass spectrometry. Food Anal Methods 10:2185–2193

    Article  Google Scholar 

  8. 8.

    Chu L, Zheng S, Qu B, Geng S, Kang X (2017) Detection of β-agonists in pork tissue with novel electrospun nanofibers-based solid-phase extraction followed ultra-high performance liquid chromatography/tandem mass spectrometry. Food Chem 227:315–321

    CAS  Article  Google Scholar 

  9. 9.

    Lin YP, Lee YL, Hung CY, Huang WJ, Lin SC (2017) Determination of multiresidue analysis of β-agonists in muscle and viscera using liquid chromatograph/tandem mass spectrometry with quick, easy, cheap, effective, rugged, and safe methodologies. J Food Drug Anal 25(2):275–284

    CAS  Article  Google Scholar 

  10. 10.

    Zhang Y, Ma H, Wu D, Li Y, Du B, Wei Q (2015) Label-free immunosensor based on au@ag 2 S nanoparticles/magnetic chitosan matrix for sensitive determination of ractopamine. J Electroanal Chem 184:3765–3771

    Google Scholar 

  11. 11.

    Wang WY, Zhang YL, Wang JY, Xue S, Ye JN (2010) Determination of β-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection. Meat Sci 85(2):302–305

    CAS  Article  Google Scholar 

  12. 12.

    Han J, Gao H, Wang W, Wang Z, Fu Z (2013) Time-resolved chemiluminescence strategy for multiplexed immunoassay of clenbuterol and ractopamine. Biosens Bioelectron 48(19):39–42

    CAS  Article  Google Scholar 

  13. 13.

    Brake JM, Abbott NL (2003) Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science 302(5653):2094–2097

    CAS  Article  Google Scholar 

  14. 14.

    Kim SR, Shah RR, Abbott NL (2000) Orientations of liquid crystals on mechanically rubbed films of bovine serum albumin: a possible substrate for biomolecular assays based on liquid crystals. Anal Chem 72(19):4646–4653

    CAS  Article  Google Scholar 

  15. 15.

    Mcumber AC, Noonan PS, Schwartz DK (2012) Surfactant-DNA interactions at the liquid crystal-aqueous interface. Soft Matter 8(16):4335–4342

    CAS  Article  Google Scholar 

  16. 16.

    Li X, Tan H, Li Y-L, Wu Z-Y, Shen GL, Yu R-Q (2014) Aptamer-based liquid crystal biosensor for detection of platelet-derived growth factor BB. Chinese J Anal Chem 42(5):629–635

    CAS  Article  Google Scholar 

  17. 17.

    Wang Y, Wang B, Shen J, Xiong XL, Deng SX (2017) Aptamer based bare eye detection of kanamycin by using a liquid crystal film on a glass support. Microchim Acta:1):1–1):7

  18. 18.

    Wu Y, Wu C, Shen S, Yu Z, Ruqin G (2013) Split Aptamer-Based Liquid Crystal Biosensor for ATP Assay. Acta Chim Sin 71(3):367

    CAS  Article  Google Scholar 

  19. 19.

    Yuan Q, Lu D, Zhang X, Chen Z, Tan W (2012) Aptamer-conjugated optical nanomaterials for bioanalysis. TrAC Trends Anal Chem 39:72–86

    CAS  Article  Google Scholar 

  20. 20.

    Cao YC, Jin R, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297(5586):1536–1540

    CAS  Article  Google Scholar 

  21. 21.

    Lan D, Li B, Zhang Z (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24(4):940–944

    Article  Google Scholar 

  22. 22.

    Mahyari M, Shaabani A, Behbahani M, Bagheri A (2014) Thiol-functionalized fructose-derived nanoporous carbon as a support for gold nanoparticles and its application for aerobic oxidation of alcohols in water. Appl Organomet Chem 28(8):576–583

    CAS  Article  Google Scholar 

  23. 23.

    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of au colloid monolayers. Anal Chem 67(4):735–743

    CAS  Article  Google Scholar 

  24. 24.

    Kristensen IS, Mowbray DJ, Thygesen KS, Jacobsen KW (2008) Comparative study of anchoring groups for molecular electronics: structure and conductance of au-S-au and au-NH(2)-au junctions. J Phys Condens Matter 20(37):374101

    CAS  Article  Google Scholar 

  25. 25.

    Izquierdolorenzo I, Sanchezcortes S, Garciaramos JV (2011) Trace detection ofaminoglutethimide drug by surface-enhanced Raman spectroscopy: a vibrational and adsorption study on gold nanoparticles. Anal Methods 3(7):1540–1545

    CAS  Article  Google Scholar 

  26. 26.

    Duan J, He D, Wang W, Liu Y, Wu H, Wang Y, Fu M, Li S (2013) The fabrication of nanochain structure of gold nanoparticles and its application in ractopamine sensing. Talanta 115(17):992–998

    CAS  Article  Google Scholar 

  27. 27.

    Yang F, Wang P, Wang R, Zhou Y, Su X, He Y, Shi L, Yao D (2016) Label free electrochemical aptasensor for ultrasensitive detection of ractopamine. Biosens Bioelectron 77:347–352

    CAS  Article  Google Scholar 

  28. 28.

    Koenig GM, Abbott NL (2010) Chemoresponsive assemblies of microparticles at liquid crystalline interfaces. Proc Natl Acad Sci U S A 107(9):3998–4003

    CAS  Article  Google Scholar 

  29. 29.

    Miller DS, Carlton RJ, Mushenheim PC, Abbott NL (2013) Instructional review: an introduction to optical methods for characterizing liquid crystals at interfaces. Langmuir 29(10):3154–3169

    CAS  Article  Google Scholar 

  30. 30.

    Song HY, Kang TF, Li NN, Lu LP, Cheng SY (2016) Highly sensitive voltammetric determination of kanamycin based on aptamer sensor for signal amplification. Anal Methods 8(16):3366–3372

    CAS  Article  Google Scholar 

  31. 31.

    Peng Y, Li L, Mu X, Guo L (2013) Aptamer-gold nanoparticle-based colorimetric assay for the sensitive detection of thrombin. Sensors Actuators B Chem 177(1):818–825

    CAS  Article  Google Scholar 

  32. 32.

    Hansma HG, Revenko I, Kim K, Laney DE (1996) Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res 24(4):713–720

    CAS  Article  Google Scholar 

  33. 33.

    Rohit JV, Kailasa SK (2017) Simple and selective detection of pendimethalin herbicide in water and food samples based on the aggregation of ractopamine-dithiocarbamate functionalized gold nanoparticles. Sensors Actuators B Chem 245:541–550

    CAS  Article  Google Scholar 

  34. 34.

    Zhu Q, Liu H, Zhang J, Wu K, Deng A, Li J (2017) Ultrasensitive QDs based electrochemiluminescent immunosensor for detecting ractopamine using AuNPs and au nanoparticles@PDDA-graphene as amplifier. Sensors Actuators B Chem 243:121–129

    CAS  Article  Google Scholar 

Download references


This work is financially supported by the Doctoral Research Startup Foundation of Jining Medical University, the Natural Science Foundation of Chongqing (CSTC2015JCYJA20014) and Ministry of Education (CQKLBST-2515005).

Author information



Corresponding authors

Correspondence to XingLiang Xiong or ShiXiong Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOC 15132 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, B., Xiong, X. et al. Gold nanoparticle-based signal enhancement of an aptasensor for ractopamine using liquid crystal based optical imaging. Microchim Acta 186, 697 (2019).

Download citation


  • Aptamer
  • Biosensor
  • Self-assembled film
  • Glass slide
  • Recognition
  • Conjugate
  • Sensing interface
  • Orientation
  • Polarized image
  • Homeotropic re-orientation