A gold electrode modified with a gold-graphene oxide nanocomposite for non-enzymatic sensing of glucose at near-neutral pH values


A nanocomposite was prepared from gold and graphene oxide via one-step electrodeposition and used to modify the surface of a gold electrode (Au-Gr/GE) that was then applied to non-enzymatic determination of glucose. The effects of deposition time and supporting substrate on the morphology, structure, and electrochemical properties of the nanocomposite were optimized. The morphologies and crystal structures were characterized by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results indicate that gold nanoparticles grew on the surface of two-dimensional graphene oxide. The electrocatalytic activity of the modified electrode towards glucose oxidation was evaluated by cyclic voltammetry and amperometric methods at pH 7.4. The Au-Gr/GE, typically operated at a potential of 0.00 V (vs. Ag/AgCl), has a linear response in the 0.05–14 mM and 14–42 mM glucose concentration range, high sensitivity (604 and 267 μA cm−2 mM−1) and a low detection limit (12 μM). The modified GE was applied to quantify glucose in sweat where it exhibited excellent sensitivity and accuracy.

The gold electrode modified with a gold-graphene (Au-Gr/GE) is prepared via a direct electrodeposition. The Au-Gr/GE is used for glucose detection in the neutral solution and it can achieve the effect of non-intrusive detection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Nantaphol S, Watanabe T, Nomura N, Siangproh W, Chailapakul O, Einaga Y (2017) Bimetallic Pt-Au nanocatalysts electrochemically deposited on boron-doped diamond electrodes for nonenzymatic glucose detection. Biosens Bioelectron 98:76–82. https://doi.org/10.1016/j.bios.2017.06.034

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Li J, Yuan R, Chai Y, Che X, Li W, Zhong X (2010) Nonenzymatic glucose sensor based on a glassy carbon electrode modified with chains of platinum hollow nanoparticles and porous gold nanoparticles in a chitosan membrane. Microchim Acta 172(1–2):163–169. https://doi.org/10.1007/s00604-010-0485-z

    CAS  Article  Google Scholar 

  3. 3.

    Monosik R, Stredansky M, Luspai K, Magdolen P, Sturdik E (2012) Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode. Enzym Microb Technol 50(4–5):227–232. https://doi.org/10.1016/j.enzmictec.2012.01.004

    CAS  Article  Google Scholar 

  4. 4.

    Zhao Y, Chu J, Li S-H, Li W-W, Liu G, Tian Y-C, Yu H-Q (2014) Non-enzymatic electrochemical detection of glucose with a gold nanowire array electrode. Electroanalysis 26(3):656–663. https://doi.org/10.1002/elan.201300565

    CAS  Article  Google Scholar 

  5. 5.

    Wang L, Zhu W, Lu W, Qin X, Xu X (2018) Surface plasmon aided high sensitive non-enzymatic glucose sensor using Au/NiAu multilayered nanowire arrays. Biosens Bioelectron 111:41–46. https://doi.org/10.1016/j.bios.2018.03.067

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1–8. https://doi.org/10.1016/j.electacta.2011.11.114

    CAS  Article  Google Scholar 

  7. 7.

    Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25(1):218–223. https://doi.org/10.1016/j.bios.2009.06.041

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Luo P, Zhang F, Baldwin RP (1991) Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal Chim Acta 244(2):169–178

    CAS  Article  Google Scholar 

  9. 9.

    Dhara K, Mahapatra DR (2017) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185(1):49. https://doi.org/10.1007/s00604-017-2609-1

  10. 10.

    Wang H, Liu R, Li Y, Lü X, Wang Q, Zhao S, Yuan K, Cui Z, Li X, Xin S, Zhang R, Lei M, Lin Z (2018) Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2(2):337–348. https://doi.org/10.1016/j.joule.2017.11.016

    CAS  Article  Google Scholar 

  11. 11.

    He X, Luan SZ, Wang L, Wang RY, Du P, Xu YY, Yang HJ, Wang YG, Huang K, Lei M (2019) Facile loading mesoporous Co3O4 on nitrogen doped carbon matrix as an enhanced oxygen electrode catalyst. Mater Lett 244:78–82. https://doi.org/10.1016/j.matlet.2019.01.144

    CAS  Article  Google Scholar 

  12. 12.

    Cherevko S, Chung CH (2010) The porous CuO electrode fabricated by hydrogen bubble evolution and its application to highly sensitive non-enzymatic glucose detection. Talanta 80(3):1371–1377. https://doi.org/10.1016/j.talanta.2009.09.038

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Yang J, Yu JH, Rudi Strickler J, Chang WJ, Gunasekaran S (2013) Nickel nanoparticle-chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens Bioelectron 47:530–538. https://doi.org/10.1016/j.bios.2013.03.051

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Bi K, Bi M, Hao Y, Luo W, Cai Z, Wang X, Huang Y (2018) Ultrafine core-shell BaTiO3@SiO2 structures for nanocomposite capacitors with high energy density. Nano Energy 51:513–523. https://doi.org/10.1016/j.nanoen.2018.07.006

    CAS  Article  Google Scholar 

  15. 15.

    Bi K, Wang X, Hao Y, Lei M, Dong G, Zhou J (2019) Wideband slot-coupled dielectric resonator-based filter. J Alloys Compd 785:1264–1269. https://doi.org/10.1016/j.jallcom.2019.01.286

    CAS  Article  Google Scholar 

  16. 16.

    Cheng TM, Huang TK, Lin HK, Tung SP, Chen YL, Lee CY, Chiu HT (2010) (110)-exposed gold nanocoral electrode as low onset potential selective glucose sensor. ACS Appl Mater Interfaces 2(10):2773–2780. https://doi.org/10.1021/am100432a

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Wang C-H, Song Y-Y, Zhao J-W, Xia X-H (2006) Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction. Surf Sci 600(4):38–42. https://doi.org/10.1016/j.susc.2005.12.013

    CAS  Article  Google Scholar 

  18. 18.

    Okutucu B, Onal S (2011) Molecularly imprinted polymers for separation of various sugars from human urine. Talanta 87:74–79. https://doi.org/10.1016/j.talanta.2011.09.043

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Makaram P, Owens D, Aceros J (2014) Trends in nanomaterial-based non-invasive diabetes sensing technologies. Diagnostics 4(2):27–46. https://doi.org/10.3390/diagnostics4020027

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Kaufman E, Lamster IB (2016) The diagnostic applications of saliva— a review. Crit Rev Oral Biol Med 13(2):197–212. https://doi.org/10.1177/154411130201300209

    Article  Google Scholar 

  21. 21.

    Olarte O, Chilo J, Pelegri-Sebastia J, Barbe K Glucose detection in human sweat using an electronic nose. In: Engineering in Medicine and Biology Society, 2013. pp 1462–1465

  22. 22.

    Moyer J, Wilson D, Finkelshtein I, Wong B, Potts R (2012) Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol Ther 14(5):398–402. https://doi.org/10.1089/dia.2011.0262

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Direct electrodeposition of gold nanostructures onto glassy carbon electrodes for non-enzymatic detection of glucose. Electrochim Acta 132:524–532. https://doi.org/10.1016/j.electacta.2014.04.031

    CAS  Article  Google Scholar 

  24. 24.

    Xiao G, He J, Chen X, Qiao Y, Wang F, Xia Q, Yu L, Lu Z (2019) A wearable, cotton thread/paper-based microfluidic device coupled with smartphone for sweat glucose sensing. Cellulose 26(7):4553–4562. https://doi.org/10.1007/s10570-019-02396-y

    CAS  Article  Google Scholar 

  25. 25.

    Shu H, Chang G, Su J, Cao L, Huang Q, Zhang Y, Xia T, He Y (2015) Single-step electrochemical deposition of high performance Au-graphene nanocomposites for nonenzymatic glucose sensing. Sensors Actuators B Chem 220:331–339. https://doi.org/10.1016/j.snb.2015.05.094

    CAS  Article  Google Scholar 

  26. 26.

    Aoun SB, Dursun Z, Koga T, Bang GS, Sotomura T, Taniguchi I (2004) Effect of metal ad-layers on Au(111) electrodes on electrocatalytic oxidation of glucose in an alkaline solution. J Electroanal Chem 567(2):175–183. https://doi.org/10.1016/j.jelechem.2003.12.022

    CAS  Article  Google Scholar 

  27. 27.

    Tominaga M, Shimazoe T, Nagashima M, Taniguchi I (2005) Electrocatalytic oxidation of glucose at gold nanoparticle-modified carbon electrodes in alkaline and neutral solutions. Electrochem Commun 7(2):189–193. https://doi.org/10.1016/j.elecom.2004.12.006

    CAS  Article  Google Scholar 

  28. 28.

    Chang G, Shu H, Ji K, Oyama M, Liu X, He Y (2014) Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose. Appl Surf Sci 288:524–529. https://doi.org/10.1016/j.apsusc.2013.10.064

    CAS  Article  Google Scholar 

  29. 29.

    Yang H, Geng L, Zhang Y, Chang G, Zhang Z, Liu X, Lei M, He Y (2019) Graphene-templated synthesis of palladium nanoplates as novel electrocatalyst for direct methanol fuel cell. Appl Surf Sci 466:385–392. https://doi.org/10.1016/j.apsusc.2018.10.050

    CAS  Article  Google Scholar 

  30. 30.

    Chen XM, Lin ZJ, Chen DJ, Jia TT, Cai ZM, Wang XR, Chen X, Chen GN, Oyama M (2010) Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 25(7):1803–1808. https://doi.org/10.1016/j.bios.2009.12.035

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Hrapovic S, Liu Y, Male KB, Luong JH (2004) Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes. Anal Chem 76(4):1083–1088

    CAS  Article  Google Scholar 

  32. 32.

    Zhou Y-G, Yang S, Qian Q-Y, Xia X-H (2009) Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun 11(1):216–219. https://doi.org/10.1016/j.elecom.2008.11.010

    CAS  Article  Google Scholar 

  33. 33.

    Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758. https://doi.org/10.1021/ac300939z

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Xia Y, Huang W, Zheng J, Niu Z, Li Z (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioelectron 26(8):3555–3561. https://doi.org/10.1016/j.bios.2011.01.044

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Xu F, Cui K, Sun Y, Guo C, Liu Z, Zhang Y, Shi Y, Li Z (2010) Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing. Talanta 82(5):1845–1852. https://doi.org/10.1016/j.talanta.2010.07.087

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Lee Y-J, Park J-Y (2011) A coral-like macroporous gold–platinum hybrid 3D electrode for enzyme-free glucose detection. Sensors Actuators B Chem 155(1):134–139. https://doi.org/10.1016/j.snb.2010.11.037

    CAS  Article  Google Scholar 

  37. 37.

    Cherevko S, Chung C-H (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sensors Actuators B Chem 142(1):216–223. https://doi.org/10.1016/j.snb.2009.07.023

    CAS  Article  Google Scholar 

  38. 38.

    Rakhi RB, Sethupathi K, Ramaprabhu S (2009) A glucose biosensor based on deposition of glucose oxidase onto crystalline gold nanoparticle modified carbon nanotube electrode. J Phys Chem B 113(10):3190–3194

    CAS  Article  Google Scholar 

Download references


The authors acknowledge the financial support from the NSFC (Nos. 21575035, 51572073, 51672074, 11774082), the NSF of Hubei Province (Nos. 2015CFA119, 2016AAA031), Wuhan application foundation frontier Project (No. 2018010401011287), and the Key Lab. of Tobacco Chemistry Foundation of Yunnan Province (No. 2016539200340109).

Author information



Corresponding authors

Correspondence to Gang Chang or Yunbin He.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest with any individual/organization for the present work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1168 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, C., Wang, J., Gao, N. et al. A gold electrode modified with a gold-graphene oxide nanocomposite for non-enzymatic sensing of glucose at near-neutral pH values. Microchim Acta 186, 722 (2019). https://doi.org/10.1007/s00604-019-3796-8

Download citation


  • Glucose detection
  • Non-invasive
  • One-step electrodeposition
  • Sweat
  • High sensitivity
  • Selectivity