Skip to main content
Log in

ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A heterojunction microcomposite was synthesized that consists of ZnO nanoparticles (ZnO NPs) anchored on MoS2 microflowers (MoS2 MFs). The material is shown to enable trace level detection of the pollutant bisphenol A (BPA). The microcomposite was characterized by XRD, XPS, SEM and TEM. In addition, coupling reaction between phenolic estrogens and Pauly’s reagents was adopted to greatly enhance the SERS signal. BPA display a characteristic Raman band at 1592 cm−1 which can be used for its selective detection. The assay is highly sensitive and has a 1 nM detection limit which is the lowest among the reported semiconductor substrates.

MoS2/ZnO MCs SERS substrate broke through the application barrier of semiconductor composite materials in SERS substrates. It also sheds light on a deeper understanding of the charge-transfer based enhancement mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Yin D, Chen YL, Zhang YH, Yang ZC, Mao HY, Xia SG, Zhang WF, Zhao WD, Zhang SS (2018) 2D porous aromatic framework as a novel solid-phase extraction adsorbent for the determination of trace BPA in Milk. Microchim Acta 81(5):749–758. https://doi.org/10.1007/s10337-018-3504-6

    Article  CAS  Google Scholar 

  2. Liu Y, Chen Y, Zhang YY, Kou QW, Zhang YJ, Wang YX, Chen L, Sun YT, Zhang HL, Jung YM (2018) Detection and identification of estrogen based on surface-enhanced resonance Raman scattering (SERRS). Molecules 23(6):1330. https://doi.org/10.3390/molecules23061330

    Article  CAS  PubMed Central  Google Scholar 

  3. Liang LP, Zhang J, Feng P, Li C, Huang YY, Dong BZ, Li LN, Guan XH (2015) Occurrence of bisphenol a in surface and drinking waters and its physicochemical removal technologies. Microchim Acta 9(1):16–38. https://doi.org/10.1007/s11783-014-0697-2

    Article  CAS  Google Scholar 

  4. Xu JY, Li Y, Bie JX, Jiang W, Guo JJ, Luo YL, Shen F, Sun CY (2015) Colorimetric method for determination of bisphenol a based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182(13):2131–2138. https://doi.org/10.1007/s00604-015-1547-z

    Article  CAS  Google Scholar 

  5. Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol a in wastewater and sewage sludge by gas chromatography-mass spectrometry. J Chromatogr A 1138(1):32–41. https://doi.org/10.1016/j.chroma.2006.10.037

    Article  CAS  PubMed  Google Scholar 

  6. Wu XQ, Wang XY, Lu WH, Wang XR, Li JH, You HY, Xiong H, Chen LX (2016) Water-compatible temperature and magnetic dual-responsive molecularly imprinted polymers for recognition and extraction of bisphenol a. J Chromatogr A 1435(26):30–38. https://doi.org/10.1016/j.chroma.2016.01.040

    Article  CAS  PubMed  Google Scholar 

  7. Shorie M, Kumar V, Kaur H, Singh K, Tomer VK, Sabherwal P (2018) Plasmonic DNA hotspots made from tungsten disulfide nanosheets and gold nanoparticles for ultrasensitive aptamer-based SERS detection of myoglobin. Microchim Acta 185:158. https://doi.org/10.1007/s00604-018-2705-x

    Article  CAS  Google Scholar 

  8. Qian Y, Wang YQ, Mei RC, Yin YC, You JM, Chen LX (2019) Polystyrene encapsulated SERS tags as promising standard tools: simple and universal in synthesis, highly sensitive and Ultrastable for bioimaging. Anal Chem 91(8):5270–5277. https://doi.org/10.1021/acs.analchem.9b00038

    Article  CAS  Google Scholar 

  9. Wang YQ, Yan B, Chen LX (2013) SERS tags: novel optical Nanoprobes for bioanalysis. Chem Rev 113(3):1391–1428. https://doi.org/10.1021/cr300120g

    Article  CAS  PubMed  Google Scholar 

  10. Ren XH, Cheshari EC, Qi JY, Li X (2018) Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol a. Microchim Acta 185(4):242. https://doi.org/10.1007/s00604-018-2772-z

    Article  CAS  Google Scholar 

  11. Wang XT, Shi WX, Wang SX, Zhao HW, Lin J, Yang Z, Chen M, Guo L (2019) Two-Dimensional Amorphous TiO2 Nanosheets Enabling High-Efficiency Photoinduced Charge Transfer for Excellent SERS Activity. J Am Chem Soc 141(14):5856–5862. https://doi.org/10.1021/jacs.9b00029

    Article  CAS  PubMed  Google Scholar 

  12. Noh T, Shin HS, Seo C, Kim JY, Youn J, Kim J, Lee KS, Joo J (2019) Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots. Microchim Acta 12:405–412. https://doi.org/10.1007/s12274-018-2230-6

    Article  CAS  Google Scholar 

  13. Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514(7523):470–474. https://doi.org/10.1038/nature13792

    Article  CAS  PubMed  Google Scholar 

  14. Vilian ATE, Dinesh B, Kang SM, Krishnan M, Huh YS, Han YK (2019) Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications. Microchim Acta 186(3):203. https://doi.org/10.1007/s00604-019-3287-y

    Article  CAS  Google Scholar 

  15. Zhao XF, Yu J, Zhang ZJ, Li CH, Li Z, Jiang SZ, Pan J, Liu AH, Zhang C, Man BY (2018) Heterogeneous and cross-distributed metal structure hybridized with MoS2 as high-performance flexible SERS substrate. Opt Express 26(18):23831–23843. https://doi.org/10.1364/OE.26.023831

    Article  CAS  PubMed  Google Scholar 

  16. Yao JC, Quan YN, Gao M, Gao RX, Chen L, Liu Y, Lang JH, Shen H, Zhang YJ, Yang LL, Yang JH (2019) AgNPs decorated mg-doped ZnO Heterostructure with dramatic SERS activity for trace detection food contaminants. J Mater Chem C 7:8199–8208. https://doi.org/10.1039/C8TC06588H

    Article  CAS  Google Scholar 

  17. Nur HH, Shanmugam S, Mutharasu D, Abdul RI (2016) Structural and surface characterization of undoped ZnO and cu doped ZnO using sol–gel spin coating method. Microchim Acta 27(4):3520–3530. https://doi.org/10.1007/s10854-015-4187-5

    Article  CAS  Google Scholar 

  18. Gao M, Yan C, Li BZ, Zhou LJ, Yao JC, Zhang YJ, Liu HL, Cao LH, Cao YT, Yang JH, Wang YX (2017) Strong red emission and catalytic properties of ZnO by adding Eu2O3 shell. J Alloys Compd 724(15):537–542. https://doi.org/10.1016/j.jallcom.2017.07.060

    Article  CAS  Google Scholar 

  19. Islam SE, Hang DR, Chen CH, Sharma KH (2018) Facile and cost-efficient synthesis of quasi 0D/2D ZnO/MoS2 nanocomposites for highly enhanced visible-light-driven photocatalytic degradation of organic pollutants and antibiotic. Chemistry 24(37):9305–9315. https://doi.org/10.1002/chem.201801397

    Article  CAS  PubMed  Google Scholar 

  20. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF (2012) Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 11(11):963–969. https://doi.org/10.1038/nmat3439

    Article  CAS  PubMed  Google Scholar 

  21. Gao M, Yao JC, Yan C, Li XF, Hu TJ, Chen L, Wang YX, Zhang YJ, Liu HL, Liu Y, Cao LH, Cao YT, Yang JH (2017) Novel composite nanomaterials with superior thermal and pressurestability for potential LED applications. J Alloys Compd 734(15):282–289. https://doi.org/10.1016/j.jallcom.2017.11.042

    Article  CAS  Google Scholar 

  22. Zheng ZH, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z (2017) Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun 8(1):1993. https://doi.org/10.1038/s41467-017-02166-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tan YH, Yu K, Li JZ, Fu H, Zhu ZQ (2014) MoS2@ZnO nano-heterojunctions with enhanced photocatalysis and field emission properties. J Appl Phys 116(6):064305. https://doi.org/10.1063/1.4893020

    Article  CAS  Google Scholar 

  24. Bang S, Lee S, Ko Y, Park J, Shin S, Seo H, Jeon H (2012) Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition. Nanoscale Res Lett 7(1):290. https://doi.org/10.1186/1556-276X-7-290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marks HL, Pishko MV, Jackson GW, Cote GL (2014) Rational design of a bisphenol a aptamer selective surface enhanced raman scattering nanoprobe. Anal Chem 86(23):11614–11619. https://doi.org/10.1021/ac502541v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moeinian A, Gür FN, Gonzalez-Torres J, Zhou LS, Murugesan VD, Dashtestani AD, Guo H, Schmidt TL, Strehle S (2019) Highly localized SERS measurements using single silicon nanowires decorated with DNA origami-based SERS probe. Nano Lett 19(2):1061–1066. https://doi.org/10.1021/acs.nanolett.8b04355

    Article  CAS  PubMed  Google Scholar 

  27. Yao JC, Quan YN, Gao RX, Li J, Chen L, Liu Y, Lang JH, Shen H, Wang YY, Yang JH, Gao M (2019) Improved charge-transfer and hot spots by doping and modulating semiconductor structure: a high sensitivity and renewability SERS substrate. Langmuir 35:8921–8926. https://doi.org/10.1021/acs.langmuir.9b00754

    Article  CAS  PubMed  Google Scholar 

  28. Mei RC, Wang YQ, Liu WH, Chen LX (2018) Lipid bilayer-enabled synthesis of waxberry-like Core/fluidic satellite nanoparticles: toward ultrasensitive SERS tags for bioimaging. ACS Appl Mater Interfaces 10(28):23605–23616. https://doi.org/10.1021/acsami.8b06253

    Article  CAS  PubMed  Google Scholar 

  29. Balčytis A, Nishijima Y, Krishnamoorthy S, Kuchmizhak A, Stoddart PR, Petruškevičius R, Juodkazis S (2018) From fundamental toward applied SERS: shared principles and divergent approaches. Adv Opt Mater 6(16):1800292. https://doi.org/10.1002/adom.201800292

    Article  CAS  Google Scholar 

  30. Zhang XY, Han DL, Ma N, Gao RX, Zhu AN, Guo S, Zhang YJ, Wang YX, Yang JH, Chen L (2018) Carrier density-dependent localized surface Plasmon resonance and charge transfer observed by controllable semiconductor content. J Phys Chem Lett 9(20):6047–6051. https://doi.org/10.1021/acs.jpclett.8b02416

    Article  CAS  PubMed  Google Scholar 

  31. Gao RX, Zhang YJ, Zhang F, Guo S, Wang YX, Chen L, Yang JH (2018) SERS polarization-dependent effects for an ordered 3D Plasmonic tilted silver Nanorod array. Nanoscale 10:8106–8114. https://doi.org/10.1039/C8NR01198B

    Article  CAS  PubMed  Google Scholar 

  32. Zhang YJ, Sun HH, Gao RX, Zhang F, Zhu AN, Chen L, Wang YX (2018) Facile SERS-active chip (PS@ag/SiO2/ag) for the determination of HCC biomarker. Sensors Actuators B Chem 272(1):34–42. https://doi.org/10.1016/j.snb.2018.05.139

    Article  CAS  Google Scholar 

  33. Yang LY, Fu CC, Wang HL, Xu SP, Xu WQ (2016) Aptamer-based surface-enhanced Raman scattering (SERS) sensor for thrombin based on supramolecular recognition, oriented assembly, and local field coupling. Microchim Acta 409(1):235–242. https://doi.org/10.1007/s00216-016-9992z

    Article  Google Scholar 

  34. Ling X, Fang W, Lee YH, Araujo PT, Zhang X, Rodriguez-Nieva JF, Lin Y, Zhang J, Kong J, Dresselhaus MS (2014) Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Lett 14(6):3033–3040. https://doi.org/10.1021/nl404610c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61675090, 61575080, 61705020 and 21676115); National Youth Program Foundation of China (No. 61405072, 21546013, 61704065, 61705078 and 51609100); Program for the development of Science and Technology Jilin province (Grant Numbers 20160101287JC and 20150519024JH); and Technology of Education Department of Jilin Province (Grant Number JJKH20170374KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Gao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, Y., Yao, J., Yang, S. et al. ZnO nanoparticles on MoS2 microflowers for ultrasensitive SERS detection of bisphenol A. Microchim Acta 186, 593 (2019). https://doi.org/10.1007/s00604-019-3702-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3702-4

Keywords

Navigation