A DNA based visual and colorimetric aggregation assay for the early growth factor receptor (EGFR) mutation by using unmodified gold nanoparticles

Abstract

A genomic DNA-based colorimetric assay is described for the detection of the early growth factor receptor (EGFR) mutation, which is the protruding reason for non-small cell lung cancer. A DNA sequence was designed and immobilized on unmodified gold nanoparticles (GNPs). The formation of the respective duplex indicates the presence of an EGFR mutation. It is accompanied by the aggregation of the GNPs in the presence of monovalent ions, and it indicates the presence of an EGFR mutation. This is accompanied by a color change from red (520 nm) to purple (620 nm). Aggregation was evidenced by transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The limit of detection is 313 nM of the mutant target strand. A similar peak shift was observed for 2.5 μM concentrations of wild type target. No significant peak shift was observed with probe and non-complementary DNA.

Schematic representation of high-specific genomic DNA sequence on gold nanoparticle (GNP) aggregation with sodium chloride (NaCl). It illustrates the detection method for EGFR mutation on lung cancer detection. Red and purple colors of tubes represent dispersed and aggregated GNP, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Chen K, Lou F, Yang F, et al (2016) Circulating tumor DNA detection in early-stage non-small cell lung Cancer patients by targeted sequencing. Sci Rep 3–10. https://doi.org/10.1038/srep31985

  2. 2.

    Chen M, Hou C, Huo D, Yang M, Fa H (2015) A highly sensitive electrochemical DNA biosensor for rapid detection of CYFRA21-1, a marker of non-small cell lung cancer. Anal Methods 7:9466–9473. https://doi.org/10.1039/C5AY02505B

    CAS  Article  Google Scholar 

  3. 3.

    Liu Q, Yin Lim S, Soo RA, Kyoung Park M, Shin Y (2015) A rapid MZI-IDA sensor system for EGFR mutation testing in non-small cell lung cancer (NSCLC). Biosens Bioelectron 74:865–871. https://doi.org/10.1016/j.bios.2015.07.055

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Zhao H, Chen K-Z, Hui B-G, Zhang K, Yang F, Wang J (2018) Role of circulating tumor DNA in the management of early-stage lung cancer. Thoracic Cancer 9:509–515. https://doi.org/10.1111/1759-7714.12622

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gao W, Zhang X, Yuan H, Wang Y, Zhou H, Jin H, Jia C, Jin Q, Cong H, Zhao J (2019) EGFR point mutation detection of single circulating tumor cells for lung cancer using a micro-well array. Biosens Bioelectron 111326:111326. https://doi.org/10.1016/j.bios.2019.111326

    CAS  Article  Google Scholar 

  6. 6.

    Shen T, Liu L, Li W, et al (2019) CT imaging-based histogram features for prediction of EGFR mutation status of bone metastases in patients with primary lung adenocarcinoma. Cancer Imaging 1–12

  7. 7.

    Saiyaros K, Kritpetcharat P, Pairojkul C, Sitthithaworn J (2019) Detection of epidermal growth factor receptor (EGFR) gene mutation in formalin fixed paraffin embedded tissue by polymerase chain reaction-single Strand conformational polymorphism (PCR-SSCP) in non-small cell lung Cancer in the northeastern region of Thailand. Asian Pac J Cancer Prev 20:1339–1343. https://doi.org/10.31557/APJCP.2019.20.5.1339

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Shoja Y, Kermanpur A, Karimzadeh F (2018) Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide /functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite elec. Biosens Bioelectron 113:108–115. https://doi.org/10.1016/j.bios.2018.04.013

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Li X, Yang T, Li CS, Wang D, Song Y, Jin L (2017) Detection of EGFR mutation in plasma using multiplex allele- specific PCR ( MAS-PCR ) and surface enhanced Raman spectroscopy. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-05050-4

    CAS  Article  Google Scholar 

  10. 10.

    Park H, You J, Park C, Jang K, Na S (2018) In-situ and highly sensitive detection of epidermal growth factor receptor mutation using nano-porous quartz crystal microbalance. J Mech Sci Technol 32:1927–1932. https://doi.org/10.1007/s12206-018-0348-9

    Article  Google Scholar 

  11. 11.

    Zhang Y, Yang D, Weng L, Wang L (2013) Early lung Cancer diagnosis by biosensors. Int J Mol Sci 14:15479–15509. https://doi.org/10.3390/ijms140815479

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tian W, Li P, He W, Liu C, Li Z (2019) Rolling circle extension-actuated loop-mediated isothermal amplification (RCA-LAMP) for ultrasensitive detection of microRNAs. Biosens Bioelectron 128:17–22. https://doi.org/10.1016/j.bios.2018.12.041

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Coudron L, McDonnell MB, Munro I et al (2018) Fully integrated digital microfluidics platform for automated immunoassay; a versatile tool for rapid, specific detection of a wide range of pathogens. Biosens Bioelectron 128:52–60. https://doi.org/10.1016/J.BIOS.2018.12.014

    Article  PubMed  Google Scholar 

  14. 14.

    Li D, Dong Y (2016) Detection and discrimination of Bioanalytes by means of colorimetric sensor Array based on unmodified gold and silver nanoparticles. J Bacteriol Parasitol 07:5–7. https://doi.org/10.4172/2155-9597.1000283

    CAS  Article  Google Scholar 

  15. 15.

    Akbari Hasanjani HR, Zarei K (2019) An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosens Bioelectron 128:1–8. https://doi.org/10.1016/j.bios.2018.12.039

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Chen K, Zhang M, Chang Y et al (2016) Utilizing gold nanoparticle probes to visually detect DNA methylation. Nanoscale Res Lett 11:304. https://doi.org/10.1186/s11671-016-1487-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Kong C, Gao L, Chen Z (2018) Colorimetric adenosine aptasensor based on DNA cycling amplification and salt-induced aggregation of gold nanoparticles 2:1–7

  18. 18.

    Lakshmipriya T, Gopinath SCB, Tang TH (2016) Biotin-streptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLoS One 11:16–20. https://doi.org/10.1371/journal.pone.0151153

    CAS  Article  Google Scholar 

  19. 19.

    Wang F, Lakshmipriya T, Gopinath SCB (2018) Red spectral shift in sensitive colorimetric detection of tuberculosis by ESAT-6 antigen-antibody complex : a new strategy with gold nanoparticle. Nanoscale Res Lett 13:1–8

    Article  Google Scholar 

  20. 20.

    Wang H, Zhao X, Han X, Tang Z, Liu S, Guo W, Deng C, Guo Q, Wang H, Wu F, Meng X, Giesy JP (2017) Effects of monovalent and divalent metal cations on the aggregation and suspension of Fe 3 O 4 magnetic nanoparticles in aqueous solution. Sci Total Environ 586:817–826. https://doi.org/10.1016/j.scitotenv.2017.02.060

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Jin X, Chen J, Zeng X, Xu LJ, Wu Y, Fu FF (2019) A signal-on magnetic electrochemical immunosensor for ultra-sensitive detection of saxitoxin using palladium-doped graphitic carbon nitride-based non-competitive strategy. Biosens Bioelectron 128:45–51. https://doi.org/10.1016/j.bios.2018.12.036

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Mahato K, Chandra P (2019) Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron 128:9–16. https://doi.org/10.1016/J.BIOS.2018.12.006

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Jin NZ, Anniebell S, Gopinath SCB, Chen Y (2016) Variations in spontaneous assembly and disassembly of molecules on unmodified gold nanoparticles. Nanoscale Res Lett 11:399. https://doi.org/10.1186/s11671-016-1615-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Liu X, Wu Z, Zhang Q, et al (2016) Single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy single gold nanoparticle-based colorimetric detection of picomolar mercury ion with dark-field microscopy. https://doi.org/10.1021/acs.analchem.5b03653

  25. 25.

    Chang C, Chen C, Chuang T, Wu T (2016) Biosensors and bioelectronics aptamer-based colorimetric detection of proteins using a branched DNA cascade ampli fi cation strategy and unmodi fi ed gold nanoparticles. Biosens Bioelectron 78:200–205. https://doi.org/10.1016/j.bios.2015.11.051

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chen C, Zhang M, Li C et al (2018) Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film. Microchim Acta 2:185

    Google Scholar 

  27. 27.

    Yarbakht M, Nikkhah M (2016) Unmodified gold nanoparticles as a colorimetric probe for visual methamphetamine detection. J Exp Nanosci 11:593–601. https://doi.org/10.1080/17458080.2015.1100333

    CAS  Article  Google Scholar 

  28. 28.

    Chen G, Dong J, Yuan Y, et al (2016) A general solution for opening double-stranded DNA for isothermal amplification. Sci Rep 1–8. https://doi.org/10.1038/srep34582

  29. 29.

    Gopinath SCB, Lakshmipriya T, Awazu K (2014) Colorimetric detection of controlled assembly and disassembly of aptamers on unmodi fi ed gold nanoparticles. Biosens Bioelectron 51:115–123. https://doi.org/10.1016/j.bios.2013.07.037

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Ma C, Wang W, Mulchandani A, Shi C (2014) A simple colorimetric DNA detection by target-induced hybridization chain reaction for isothermal signal amplification. Anal Biochem 457:19–23. https://doi.org/10.1016/j.ab.2014.04.022

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Godakhindi V, Kang P, Randrianalisoa J, Qin Z (2017) Tuning the gold nanoparticle colorimetric assay by nanoparticle size, concentration, and size combinations for oligonucleotide detection. ACS Sensors 2:1627–1636. https://doi.org/10.1021/acssensors.7b00482

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320. https://doi.org/10.1016/j.bios.2015.11.043

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Zhang H, Li X, He F, Zhao M, Ling L (2018) Turn-off colorimetric sensor for sequence-specific recognition of single-stranded DNA based upon Y-shaped DNA structure. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-30529-z

    CAS  Article  Google Scholar 

  34. 34.

    Niu L, Zhao F, Chen J et al (2018) Isothermal amplification and rapid detection of Klebsiella pneumoniae based on the multiple cross displacement amplification ( MCDA ) and gold nanoparticle lateral flow biosensor ( LFB ). PLoS One 10:1–14

    Google Scholar 

  35. 35.

    Anniebell S, Gopinath SCB (2018) Polymer conjugated gold nanoparticles in biomedical applications. Curr Med Chem 1433–1445. https://doi.org/10.2174/0929867324666170116123633

  36. 36.

    Wu W, Li J, Pan D, Li J, Song S, Rong M, Li Z, Gao J, Lu J (2014) Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of salmonella typhimurium. ACS Appl Mater Interfaces 6:16974–16981. https://doi.org/10.1021/am5045828

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Yu C, Irudayaraj J (2007) Supporting information: a multiplex biosensor using gold nanorods. Anal Chem 79:572–579. https://doi.org/10.1016/S0009-9236(03)00088-2

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lou S, Ye JY, Li KQ, Wu A (2012) A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size. Analyst 137:1174–1181. https://doi.org/10.1039/c2an15844b

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Izanloo C (2017) Effect of gold nanoparticle on stability of the DNA molecule: a study of molecular dynamics simulation. Nucleosides Nucleotides Nucleic Acids 36:571–582. https://doi.org/10.1080/15257770.2017.1353697

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Carnerero JM, Prado-gotor R, Jimenez-ruiz A, Grueso EM (2017) Understanding and improving aggregated gold nanoparticle / dsDNA interactions by molecular spectroscopy and deconvolution methods. Phys Chem Chem Phys 19:16113–16123. https://doi.org/10.1039/C7CP02219K

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Rafati A, Zarrabi A, Abediankenari S et al (2018) Sensitive colorimetric assay using insulin G-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles. R Soc Open Sci 3:171835

    Article  Google Scholar 

  42. 42.

    Zhong X, Li D, Du W et al (2018) Rapid recognition of volatile organic compounds with colorimetric sensor arrays for lung cancer screening. Anal Bioanal Chem 410:3671–3681. https://doi.org/10.1007/s00216-018-0948-3

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Zou B, Cao X, Wu H, Song Q, Wang J, Kajiyama T, Kambara H, Zhou G (2015) Sensitive and specific colorimetric DNA detection by invasive reaction coupled with nicking endonuclease-assisted nanoparticles amplification. Biosens Bioelectron 66:50–54. https://doi.org/10.1016/j.bios.2014.10.077

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Mazzone PJ, Hammel J, Dweik R, Na J, Czich C, Laskowski D, Mekhail T (2007) Diagnosis of lung cancer by the analysis of exhaled breath with a colorimetric sensor array. Thorax 62:565–568. https://doi.org/10.1136/thx.2006.072892

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Mazzone PJ, Wang XF, Xu Y, Mekhail T, Beukemann MC, Na J, Kemling JW, Suslick KS, Sasidhar M (2012) Exhaled breath analysis with a colorimetric sensor array for the identification and characterization of lung cancer. J Thorac Oncol 7:137–142. https://doi.org/10.1097/JTO.0b013e318233d80f

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Lee H, Kang T, Yoon KA, Lee SY, Joo SW, Lee K (2010) Colorimetric detection of mutations in epidermal growth factor receptor using gold nanoparticle aggregation. Biosens Bioelectron 25:1669–1674. https://doi.org/10.1016/j.bios.2009.12.002

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Wide Bandgap Semiconductor Packaging under Long Term Research Grant Scheme from Ministry of Education (MOE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subash C. B. Gopinath.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 730 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Gopinath, S.C.B., Arshad, M.K.M. et al. A DNA based visual and colorimetric aggregation assay for the early growth factor receptor (EGFR) mutation by using unmodified gold nanoparticles. Microchim Acta 186, 546 (2019). https://doi.org/10.1007/s00604-019-3696-y

Download citation

Keywords

  • Controlled assembly and disassembly
  • Colorimetric detection
  • Non-small cell lung cancer
  • Bare eye detection
  • Red and blue shifts