Absolute quantification of particle number concentration using a digital single particle counting system


The accurate determination of the molar concentration or the number concentration of particles in a defined volume is important but challenging. Since particle diversity and heterogeneity cannot be ignored in particle quantification, single particle counting has become quite important. However, most methods require standard samples (calibrators) which are usually difficult to obtain. The authors describe a method for single particle counting that is based on the combination of digital counting and formation of microdroplets in a microchip. By compartmentalizing particles into picoliter droplets, positive droplets encapsulating particles were counted and particle concentrations were calculated by Poisson statistics. The concentration of particles over a wide range (from 5.0 × 103 to 1.8 × 107 particles per mL) were accurately determined without the need for using a calibrator. A microdroplet chip including a T-junction channel achieved a 9-fold increase of signal-to-background ratio compared to the traditional flow-focusing chip. This makes the digital counting system a widely applicable tool for quantification of fluorescent particles. Various particles including differently sized fluorescent microspheres and bacteria with large heterogeneity in shape such as Escherichia coli DH5α-pDsRed were accurately quantified by this method.

Schematic representation of the digital single particle counting system for absolute quantification of particles. Particles compartmentalized in picoliter droplets were counted and the number concentration of particles was determined using digital analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Li J, Fu C, Yang CF (2013) Recent advances in micro/nano-particles for clinical detection of cancer biomarkers. Anal Methods 5:5862–5874

    CAS  Article  Google Scholar 

  2. 2.

    Chen G, Roy I, Yang C, Prasad PN (2016) Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem Rev 116:2826–2885

    CAS  Article  Google Scholar 

  3. 3.

    Yang S, Luo X (2014) Mesoporous nano/micro noble metal particles: synthesis and applications. Nanoscale 6:4438–4457

    CAS  Article  Google Scholar 

  4. 4.

    Shang J, Gao X (2014) Nanoparticle counting: towards accurate determination of the molar concentration. Chem Soc Rev 43:7267–7278

    CAS  Article  Google Scholar 

  5. 5.

    Khandare J, Minko T (2006) Polymer-drug conjugates: Progress in polymeric prodrugs. Prog Polym Sci 31:359–397

    CAS  Article  Google Scholar 

  6. 6.

    Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    CAS  Article  Google Scholar 

  7. 7.

    Dai Q, Wang Y, Li X, Zhang Y, Pellegrino DJ, Zhao M, Zou B, Seo JT, Wang Y, Yu WW (2009) Size-dependent composition and molar extinction coefficient of PbSe semiconductor nanocrystals. ACS Nano 3:1518–1524

    CAS  Article  Google Scholar 

  8. 8.

    Hu X, Su D, Du Z, Huang X, Dong C, Ren J (2016) A single particle method for direct determination of molar concentrations of gold nanoparticles, and its application to the determination of the activity of caspase 3 and drug-induced cell apoptosis. Microchim Acta 183:2457–2465

    CAS  Article  Google Scholar 

  9. 9.

    Wang S, Li L, Jin S, Li W, Hang W, Yan X (2017) Rapid and quantitative measurement of single quantum dots in a sheath flow cuvette. Anal Chem 89:9857–9863

    CAS  Article  Google Scholar 

  10. 10.

    Zhang C, Johnson LW (2008) Simple and accurate quantification of quantum dots via single-particle counting. J Am Chem Soc 130:3750–3751

    CAS  Article  Google Scholar 

  11. 11.

    Boika A, Bard AJ (2015) Time of first arrival in electrochemical collision experiments as a measure of ultralow concentrations of analytes in solution. Anal Chem 87:4341–4346

    CAS  Article  Google Scholar 

  12. 12.

    Xiao X, Fan FRF, Zhou J, Bard AJ (2008) Current transients in single nanoparticle collision events. J Am Chem Soc 130:16669–16677

    CAS  Article  Google Scholar 

  13. 13.

    Laborda F, Jiménez-Lamana J, Bolea E, Castillo JR (2013) Critical considerations for the determination of nanoparticle number concentrations, size and number size distributions by single particle ICP-MS. J Anal At Spectrom 28:1220–1232

    CAS  Article  Google Scholar 

  14. 14.

    Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:9361–9369

    CAS  Article  Google Scholar 

  15. 15.

    Han G, Xing Z, Dong Y, Zhang S, Zhang X (2011) One-step homogeneous DNA assay with single-nanoparticle detection. Angew Chem Int Ed 50:3462–3465

    CAS  Article  Google Scholar 

  16. 16.

    Carr B, Wright M (2013) Nanoparticle tracking analysis a review of applications and usage 2010–2012, NanoSight Ltd, pp 5–16, pp 161–175

  17. 17.

    Vives-Rego J, Lebaron P, Caron GN (2000) Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol Rev 24:429–448

    CAS  Article  Google Scholar 

  18. 18.

    Coulter WH (1956) High speed automatic blood cell counter and cell size analyzer. Proc Natl Electron Conf 12:1034–1040

    Google Scholar 

  19. 19.

    Wen CY, Tang M, Hu J, Wu LL, Pang DW, Zeng JB, Li XY (2016) Determination of the absolute number concentration of nanoparticles and the active affinity sites on their surfaces. Anal Chem 88:10134–10142

    CAS  Article  Google Scholar 

  20. 20.

    Wo X, Li Z, Jiang Y, Li M, Su Y, Wang W, Tao N (2016) Determining the absolute concentration of nanoparticles without calibration factor by visualizing the dynamic processes of interfacial adsorption. Anal Chem 88:2380–2385

    CAS  Article  Google Scholar 

  21. 21.

    Najah M, Griffiths AD, Ryckelynck M (2012) Teaching single-cell digital analysis using droplet-based microfluidics. Anal Chem 84:1202–1209

    CAS  Article  Google Scholar 

  22. 22.

    Witters D, Sun B, Begolo S, Rodriguez-Manzano J, Robles W, Ismagilov RF (2014) Digital biology and chemistry. Lab Chip 14:3225–3232

    CAS  Article  Google Scholar 

  23. 23.

    Zhang Y, Hiroyuki N (2017) Digital bioassays: theory, applications, and perspectives. Anal Chem 89:92–101

    CAS  Article  Google Scholar 

  24. 24.

    Hümmer D, Kurth F, Naredi-Rainer N, Dittrich PS (2016) Single cells in confined volumes: microchambers and microdroplets. Lab Chip 16:447–458

    Article  Google Scholar 

  25. 25.

    Al-Hetlani E, Amin MO (2019) Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis and detection. Microchim Acta 186:55

    Article  Google Scholar 

  26. 26.

    Fan YQ, Wang M, Gao F, Zhuang J, Tang G, Zhang YJ (2016) Recent development of droplet microfluidics in digital polymerase chain reaction. Chin J Anal Chem 44:1300–1307

    CAS  Article  Google Scholar 

  27. 27.

    Basova EY, Foret F (2015) Droplet microfluidics in (bio) chemical analysis. Analyst 140:22–38

    CAS  Article  Google Scholar 

  28. 28.

    Rissin DM, Kan CW, Campbell TG, Howes SC, Fournier DR, Song L, Piech T, Patel PP, Chang L, Rivnak AJ, Ferrell EP, Randall JD, Provuncher GK, Walt DR, Duffy DC (2010) Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat Biotechnol 28:595–599

    CAS  Article  Google Scholar 

  29. 29.

    Ge S, Liu W, Schlappi T, Ismagilov RF (2014) Digital, ultrasensitive, end-point protein measurements with large dynamic range via Brownian trapping with drift. J Am Chem Soc 136:14662–14665

    CAS  Article  Google Scholar 

  30. 30.

    Paunescu D, Mora CA, Querci L, Heckel R, Puddu M, Hattendorf B, Günther D, Grass RN (2015) Detecting and number counting of single engineered nanoparticles by digital particle polymerase chain reaction. ACS Nano 9:9564–9572

    CAS  Article  Google Scholar 

  31. 31.

    Yang YJ, Feng X, Xu N, Pang DW, Zhang ZL (2013) Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips. Appl Phys Lett 102:123502

    Article  Google Scholar 

  32. 32.

    Kreutz JE, Munson T, Huynh T, Shen F, Du WB, Ismagilov RF (2011) Theoretical design and analysis of multivolume digital assays with wide dynamic range validated experimentally with microfluidic digital PCR. Anal Chem 83:8158–8168

    CAS  Article  Google Scholar 

  33. 33.

    Guo M, Wang H, Xie N, Xie Z (2015) Positive effect of carbon sources on natural transformation in Escherichia coli: role of low-level cyclic AMP (cAMP)-cAMP receptor protein in the derepression of rpoS. J Bacteriol 197:3317–3328

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (21775111), and the National Science and Technology Major Project of China (2018ZX10301405).

Author information



Corresponding author

Correspondence to Zhi-Ling Zhang.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 20108 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Yang, YJ., Xiong, JY. et al. Absolute quantification of particle number concentration using a digital single particle counting system. Microchim Acta 186, 529 (2019). https://doi.org/10.1007/s00604-019-3692-2

Download citation


  • Digital analysis
  • Number concentration determination
  • Poisson statistics
  • Droplet microfluidics
  • Picoliter droplet