Molecularly imprinted mesoporous silica incorporating C3N4 dots and CdTe quantum dots as ratiometric fluorescent probe for determination of Malachite Green


A new dual-emission ratiometric fluorescent probe was synthesized and successfully used for the determination of Malachite Green (MG) in fish farming water. The ratiometric fluorescent probe was successfully composited by sol-gel method using C3N4 and CdTe quantum dots as fluorescent materials combined with mesoporous molecularly imprinted polymers. MG quenches the red fluorescence of the CdTe QDs (with excitation/emission wavelengths at 350/680 nm) while the blue fluorescence of C3N4 (with excitation/emission wavelengths at 350/458 nm) remains unchanged. The change of fluorescence color and fluorescence intensity ratio can be successfully used for quantification of malachite green. In addition, the mesoporous structure has a large surface and good adsorption capacity for malachite green. The normalized intensity of fluorescence increases linearly in the 50–1000 ng·mL−1 MG concentration range, and the detection limit is 10 ng·mL−1. The imprinting factor is 3.2. The nanoprobe was applied to the determination of MG in fish farming water samples. Recoveries and relative standard deviations were 92.5–97.8% and 2.5–6.2%, respectively.

Schematic representation of synthesis of molecularly imprinted mesoporous silica ratiometric fluorescent probes incorporating C3N4 dots and CdTe quantum dots for determination of malachite green.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Alderman DJ, Clifton-Hadley RS (1993) Malachite green: a pharmacokinetic study in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 16(4):297–311.

    CAS  Article  Google Scholar 

  2. 2.

    Srivastava S, Sinha R, Roy D (2004) Toxicological effects of malachite green. Aquat Toxicol 66(3):319–329.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Zhang YY, Huang YQ, Zhai FL, Du R, Liu YD, Lai KQ (2012) Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food Chem 135:845–850.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Bañuelos JA, García-Rodríguez O, El-Ghenymy A, Rodríguez-Valadez FJ, Godínez LA, Brillas E (2016) Advanced oxidation treatment of malachite green dye using a low cost carbon-felt air-diffusion cathode. J Environ Chem Eng 4:2066–2075.

    CAS  Article  Google Scholar 

  5. 5.

    Aydin F, Yilmaz E, Soylak M (2017) A simple and novel deep eutectic solvent based ultrasound-assisted emulsification liquid phase microextraction method for malachite green in farmed and ornamental aquarium fish water samples. Microchem J 132:280–285.

    CAS  Article  Google Scholar 

  6. 6.

    Valle L, Diaz C, Zanocco AL, Richter P (2005) Determination of the sum of malachite green and leucomalachite green in salmon muscle by liquid chromatography-atmospheric pressure chemical ionisation-mass spectrometry. J Chromatogr A 1067:101–105.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Ascari J, Dracz S, Santos FA, Lima JA, Diniz MHG, Vargas EA (2012) Validation of an LC-MS/MS method for malachite green (MG), leucomalachite green (LMG), crystal violet (CV) and leucocrystal violet (LCV) residues in fish and shrimp. Food Addit Contam A 29(4):602–608.

    CAS  Article  Google Scholar 

  8. 8.

    Chang GR, Chen HS, Lin FY (2016) Analysis of banned veterinary drugs and herbicide residues in shellfish by liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-tandem mass spectrometry (GC/MS/MS). Mar Pollut Bull 113(1–2):579–584.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Xu SN, Chen LG, Ma L (2018) Fluorometric determination of quercetin by using graphitic carbon nitride nanoparticles modified with a molecularly imprinted polymer. Microchim Acta 185(10):492.

    CAS  Article  Google Scholar 

  10. 10.

    Wang J, Peng X, Li DQ, Jiang XC, Pan ZF, Chen AM, Huang L, Hu J (2018) Ratiometric ultrasensitive fluorometric detection of ascorbic acid using a dually emitting CdSe@SiO2@CdTe quantum dot hybrid. Microchim Acta 185(1):42.

    CAS  Article  Google Scholar 

  11. 11.

    Yan X, Li HX, Zheng WS, Su XG (2015) Visual and fluorescent detection of tyrosinase activity by using dual-emission ratiometric fluorescence probe. Anal Chem 87(17):8904–8909.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Feng XT, Ashley J, Zhou TC, Sun Y (2018) Fluorometric determination of doxycycline based on the use of carbon quantum dots incorporated into a molecularly imprinted polymer. Microchim Acta 185(11):500.

    CAS  Article  Google Scholar 

  13. 13.

    Wang JP, Pan MF, Fang GZ, Wang S (2009) Preparation of a novel molecularly imprinted polymer by a sol-gel process for on-line solid-phase extraction coupled with high performance liquid chromatography to detect trace enrofloxacin in fish and chicken samples. Microchim Acta 166:295–302.

    CAS  Article  Google Scholar 

  14. 14.

    Tang FQ, Li LL, Chen D (2012) Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater 24(12):1504–1534.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Wang XY, Yu SM, Liu W, Fu LW, Wang YQ, Li JH, Chen LX (2018) Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sensors 3(2):378–385.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Xu SF, Lu HZ (2016) Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT. Biosens Bioelectron 85:950–956.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ren XH, Liu HC, Chen LG (2015) Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer. Microchim Acta 182:193–200.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang L, Chen LG (2016) Fluorescence probe based on hybrid mesoporous silica/quantum dot/molecularly imprinted polymer for detection of tetracycline. ACS Appl Mater Interfaces 8:16248–16256.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Xu SN, Ding J, Chen LG (2018) A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica–graphitic carbon nitride composite. Anal Bioanal Chem 410:7103–7112.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Bao H, Wang E, Dong S (2006) One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nano-composites. Small 2:476–480.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Sun YL (2014) Molecularly imprinted polymer for 2, 4-dichlorophenoxyacetic acid prepared by a sol-gel method. J Chem Sci 126(4):1005–1011.

    CAS  Article  Google Scholar 

  22. 22.

    Ma JP, Yan FL, Chen FX, Jiang LH, Li JH, Chen LX (2015) C18-functionalized magnetic silica nanoparticles for solid phase extraction of microcystin-LR in reservoir water samples followed by HPLC-DAD determination. J Liq Chromatogr Relat Technol 38:655–661.

    CAS  Article  Google Scholar 

  23. 23.

    Xu SF, Lu HZ (2015) One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples. Biosens Bioelectron 73:160–166.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Zhang L, Chen LG (2018) Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer. Microchim Acta 185(2):135.

    CAS  Article  Google Scholar 

  25. 25.

    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26(5):2553–2558.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Chang HX, Tang LH, Wang Y, Jiang JH, Li JH (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82(6):2341–2346.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Zu FL, Yan FY, Bai ZJ, Xu JX, Wang YY, Huang YC, Zhou XG (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914.

    CAS  Article  Google Scholar 

  28. 28.

    Liu CB, Song ZL, Pan JM, Yan YS, Cao ZJ, Wei X, Gao L, Wang J, Dai JD, Meng MJ, Yu P (2014) A simple and sensitive surface molecularly imprinted polymers based fluorescence sensor for detection of λ-Cyhalothrin. Talanta 125:14–23.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    DB21/T 2288—2014 Determination of malachite green residues in aquaculture water by HPLC-MS/MS method. Accessed 19 June 2014

  30. 30.

    Mirzajani R, Ahmadi S (2015) Melamine supported magnetic iron oxide nanoparticles (Fe3O4@Mel) for spectrophotometric determination of malachite green in water samples and fish tissues. J Ind Eng Chem 23:171–178.

    CAS  Article  Google Scholar 

  31. 31.

    Al-Degs YS, Sweileh JA (2012) Simultaneous determination of five commercial cationic dyes in stream waters using diatomite solid-phase extractant and multivariate calibration. Arab J Chem 5(2):219–224.

    CAS  Article  Google Scholar 

  32. 32.

    Farhadi K, Maleki R, Nezhad NM, Samadi N (2010) Spectrophotometric determination of malachite green residue in water samples after preconcentration on surfactant-coated alumina. Spectrosc Lett 43:101–107.

    CAS  Article  Google Scholar 

  33. 33.

    Li YH, Yang T, Qi XL, Qiao YW, Deng AP (2008) Development of a group selective molecularly imprinted polymers based solid phase extraction of malachite green from fish water and fish feed samples. Anal Chim Acta 624(2):317–325.

    CAS  Article  PubMed  Google Scholar 

Download references


This work was supported by the Fundamental Research Funds for the Central Universities (No.2572017 EB08) and was supported by Natural Science Foundation of Heilongjiang Province of China (No.JJ2018ZR0081).

Author information



Corresponding author

Correspondence to Ligang Chen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1.20 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Zhang, L., Yu, G. et al. Molecularly imprinted mesoporous silica incorporating C3N4 dots and CdTe quantum dots as ratiometric fluorescent probe for determination of Malachite Green. Microchim Acta 186, 556 (2019).

Download citation


  • Dual emission
  • Mesoporous structure
  • Molecularly imprinted polymers
  • Nanoprobe
  • Fish farming water
  • Fluorometry