Visual detection of the prostate specific antigen via a sandwich immunoassay and by using a superwettable chip coated with pH-responsive silica nanoparticles

Abstract

A pH-responsive superwettable chip is described whose surface can switch between superhydrophobic and superhydrophilic. It can be used for the visual detection of the prostate specific antigen (PSA) based on contact angle readout. Magnetic beads were modified with primary antibody against PSA. After immunobinding, gold nanoparticles loaded with secondary antibody labeled with glucose oxidase is added. On addition of glucose, gluconic acid is formed which causes a drop in the local pH value. This results in a wettability switch of the pH-responsive superwettable chip from hydrophobic to hydrophilic. Under the optimized conditions, PSA can be quantified with a 3.2 pg mL−1 limit of detection by analyzing the contact angle and the related color that changes from blue via orange to red. The method is applicable to PSA detection in serum samples and for visual classification by cancer patients and healthy persons. It is also suitable for color-blind and color-weak individuals. Conceivably, this kind of assay can be transferred to the determination of various kinds of other bioanalytes including nucleotide, proteins, and even of ions and small organic molecules, and thus is has a wide scope.

Schematic presentation of a pH-responsive superwettable chip coated with silica nanoparticles for the visual detection of prostate specific antigen (PSA) by reading the contact angle. The superwettable chip achieves reliable clinical detection of serum PSA from prostate cancer patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Ye H, Yang K, Tao J, Liu Y, Zhang Q, Habibi S, Nie Z, Xia X (2017) An enzyme-free signal amplification technique for ultrasensitive colorimetric assay of disease biomarkers. ACS Nano 11:2052–2059

    CAS  Article  Google Scholar 

  2. 2.

    Wu G, Datar RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers. Nat Biotechnol 19:856–860

    CAS  Article  Google Scholar 

  3. 3.

    Zhu Y, Wang H, Wang L, Zhu J, Jiang W (2016) Cascade signal amplification based on copper nanoparticle-reported rolling circle amplification for ultrasensitive electrochemical detection of the prostate cancer biomarker. ACS Appl Mater Interfaces 8:2573–2581

    CAS  Article  Google Scholar 

  4. 4.

    Rodríguez-Lorenzo L, Rdl R, Álvarez-Puebla RA, Liz-Marzán LM, Stevens MM (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604–607

    Article  Google Scholar 

  5. 5.

    Liu D, Huang X, Wang Z, Jin A, Sun X, Zhu L, Wang F, Ma Y, Niu G, Walke ARH, Chen X (2013) Gold nanoparticle-based activatable probe for sensing ultralow levels of prostate-specific antigen. ACS Nano 7:5568–5576

    CAS  Article  Google Scholar 

  6. 6.

    Li X, Li W, Yang Q, Gong X, Guo W, Dong C, Liu J, Xuan L, Chang J (2014) Rapid and quantitative detection of prostate specific antigen with a quantum dot nanobeads-based immunochromatography test strip. ACS Appl Mater Interfaces 6:6406–6414

    CAS  Article  Google Scholar 

  7. 7.

    Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11:4926–4933

    CAS  Article  Google Scholar 

  8. 8.

    Kaya T, Kaneko T, Kojima S, Nakamura Y, Ide Y, Ishida K, Suda Y, Yamashita K (2015) High-sensitivity immunoassay with surface plasmon field-enhanced fluorescence spectroscopy using a plastic sensor chip: application to quantitative analysis of total prostate-specific antigen and GalNAcbeta1-4GlcNAc-linked prostate-specific antigen for prostate cancer diagnosis. Anal Chem 87:1797–1803

    CAS  Article  Google Scholar 

  9. 9.

    Yang L, Li Y, Zhang Y, Fan D, Pang X, Wei Q, Du B (2017) 3D nanostructured palladium-functionalized graphene-aerogel-supported Fe3O4 for enhanced Ru(bpy)3 (2+)-based electrochemiluminescent immunosensing of prostate specific antigen. ACS Appl Mater Interfaces 9:35260–35267

    CAS  Article  Google Scholar 

  10. 10.

    Thaxton CS, Elghanian R, Thomas AD, Stoeva SI, Lee JS, Smith ND, Schaeffer AJ, Klocker H, Horninger W, Bartsch G, Mirkin CA (2009) Nanoparticle-based bio-barcode assay redefines "undetectable" PSA and biochemical recurrence after radical prostatectomy. Proc Natl Acad Sci U S A 106:18437–18442

    CAS  Article  Google Scholar 

  11. 11.

    Lai W, Tang D, Zhuang J, Chen G, Yang H (2014) Magnetic bead-based enzyme-chromogenic substrate system for ultrasensitive colorimetric immunoassay accompanying cascade reaction for enzymatic formation of squaric acid-iron(III) chelate. Anal Chem 86:5061–5068

    CAS  Article  Google Scholar 

  12. 12.

    Burgess IB, Koay N, Raymond KP, Kolle M, Loncar M, Aizenberg J (2011) Wetting in color: colorimetric differentiation of organic liquids with high selectivity. ACS Nano 6:1427–1437

    Article  Google Scholar 

  13. 13.

    Tian T, Li J, Song Y, Zhou L, Zhu Z, Yang CJ (2016) Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip 16:1139–1151

    CAS  Article  Google Scholar 

  14. 14.

    Fu E (2014) Enabling robust quantitative readout in an equipment-free model of device development. Analyst 139:4750–4757

    CAS  Article  Google Scholar 

  15. 15.

    Yao X, Hu Y, Grinthal A, Wong TS, Mahadevan L, Aizenberg J (2013) Adaptive fluid-infused porous films with tunable transparency and wettability. Nat Mater 12:529–534

    CAS  Article  Google Scholar 

  16. 16.

    Martin JJ, Fiore BE, Erb RM (2015) Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 6:8641

    Article  Google Scholar 

  17. 17.

    Zhang QX, Chen YX, Guo Z, Liu HL, Wang DP, Huang XJ (2013) Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. ACS Appl Mater Interfaces 5:10633–10642

    CAS  Article  Google Scholar 

  18. 18.

    Hou X, Hu Y, Grinthal A, Khan M, Aizenberg J (2015) Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour. Nature 519:70–73

    CAS  Article  Google Scholar 

  19. 19.

    Utech S, Bley K, Aizenbergb J, Vogel N (2016) Tailoring re-entrant geometry in inverse colloidal monolayers to control surface wettability. J Mater Chem A 4:6853–6859

    CAS  Article  Google Scholar 

  20. 20.

    Kreder MJ, Alvarenga J, Kim P, Aizenberg J (2016) Design of anti-icing surfaces: smooth, textured or slippery? Nat Rev Mater 1(1):15003

    CAS  Article  Google Scholar 

  21. 21.

    Liu M, Wang S, Jiang L (2017) Nature-inspired superwettability systems. Nat Rev Mater 2(7):17036

    CAS  Article  Google Scholar 

  22. 22.

    Gao ZF, Liu R, Wang J, Dai J, Huang WH, Liu M, Wang S, Xia F, Jiang L (2018) Controlling droplet motion on an organogel surface by tuning the chain length of dna and its biosensing application. Chem 4:2929–2943

    CAS  Article  Google Scholar 

  23. 23.

    Zhan S, Pan Y, Gao ZF, Lou X, Xia F (2018) Biological and chemical sensing applications based on special wettable surfaces. TrAC Trends Anal Chem 108:183–194

  24. 24.

    Angelis FD, Gentile F, Mecarini F, Das G, Moretti M, Candeloro P, Coluccio ML, Cojoc G, Accardo A, Liberale C, Zaccaria RP, Perozziello G, Tirinato L, Toma A, Cuda G, Cingolani R, Fabrizio ED (2011) Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat Photonics 5:682–687

    Article  Google Scholar 

  25. 25.

    Xu LP, Chen Y, Yang G, Shi W, Dai B, Li G, Cao Y, Wen Y, Zhang X, Wang S (2015) Ultratrace DNA detection based on the condensing-enrichment effect of superwettable microchips. Adv Mater 27:6878–6884

    CAS  Article  Google Scholar 

  26. 26.

    Gao ZF, Sann EE, Lou X, Liu R, Dai J, Zuo X, Xia F, Jiang L (2018) Naked-eye point-of-care testing platform based on a pH-responsive superwetting surface: toward the non-invasive detection of glucose. NPG Asia Mater 10:177–189

    CAS  Article  Google Scholar 

  27. 27.

    Liu Y, Zhang L, Wei W, Zhao H, Zhou Z, Zhang Y, Liu S (2015) Colorimetric detection of influenza a virus using antibody-functionalized gold nanoparticles. Analyst 140:3989–3995

    CAS  Article  Google Scholar 

  28. 28.

    Ojea-Jime’nez I, Puntes V (2009) Instability of cationic gold nanoparticle bioconjugates: the role of citrate ions. J Am Chem Soc 131:13320–13327

    Article  Google Scholar 

  29. 29.

    Huang J, Cheng F, Binks BP, Yang H (2015) pH-responsive gas-water-solid interface for multiphase catalysis. J Am Chem Soc 137:15015–15025

    CAS  Article  Google Scholar 

  30. 30.

    Yang H, Zhou T, Zhang W (2013) A strategy for separating and recycling solid catalysts based on the pH-triggered Pickering-emulsion inversion. Angew Chem Int Ed 52:7455–7459

    CAS  Article  Google Scholar 

  31. 31.

    Cheng M, Liu Q, Ju G, Zhang Y, Jiang L, Shi F (2014) Bell-shaped superhydrophilic-superhydrophobic-superhydrophilic double transformation on a pH-responsive smart surface. Adv Mater 26:306–310

    CAS  Article  Google Scholar 

  32. 32.

    Nakamura S, Ogura Y (1968) Action mechanism of glucose oxidase of Aspergillus Niger. J Biochem 63:308–316

    CAS  Article  Google Scholar 

  33. 33.

    Rey EG, O'Dell D, Mehta S, Erickson D (2017) Mitigating the hook effect in lateral flow sandwich immunoassays using real-time reaction kinetics. Anal Chem 89:5095–5100

    CAS  Article  Google Scholar 

  34. 34.

    Lilja H, Ulmert D, Vickers AJ (2008) Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 8:268–278

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31800829, 21703210), the Natural Science Foundation of Shandong Province (ZR2018BB054), and PhD Research Foundation of Linyi University (LYDX2018BS005).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ei Ei Sann or Zhong Feng Gao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1724 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, J.B., Sann, E.E., Wang, X.Y. et al. Visual detection of the prostate specific antigen via a sandwich immunoassay and by using a superwettable chip coated with pH-responsive silica nanoparticles. Microchim Acta 186, 550 (2019). https://doi.org/10.1007/s00604-019-3662-8

Download citation

Keywords

  • Contact angle
  • Hydrophilicity and hydrophobicity
  • Cancer patient
  • Magnetic beads
  • Gold nanoparticles