Skip to main content
Log in

Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Rolling circle amplification (RCA) is a linear isothermal amplification technique that is widely applied in biomolecular assays due to its high specificity. Handling of a target sample using magnetic microbeads (MMBs) in a multi-step assay is appealing as the MMBs enable separation and transportation using an external magnet. Detection of amplicons using optomagnetic measurements of the rotational diffusion properties of magnetic nanoparticles (MNPs) is also appealing as it can be performed on any transparent sample container. Two strategies are described for integration of MMB sample handling in an RCA assay with on-chip optomagnetic detection of the amplification products. The first strategy relies on selective and irreversible release of the amplicons from the MMBs so that the binding of functionalized MNPs to the amplicons can be detected optomagnetically. The second strategy relies on the incorporation of MNPs into RCA products during RCA, followed by their separation on MMBs and subsequent optomagnetic detection upon release from the RCA products. Using MMB handling of RCA steps, the limits of detection (LODs) for a synthetic DNA target representative of Victoria Influenza type B were found to be between 4 and 20 pM with total assay times between 2 and 2.5 h. Without magnetic microbead sample handling, the LOD was 200 fM. The findings provide deeper insight into the use of magnetic microbeads as solid substrates to handle a DNA target for integration of RCA as well as other DNA-based assays.

Schematic illustration of magnetic microbeads transporting a DNA target through the steps in a rolling circle amplification assay. Optomagnetic measurements detect the binding of magnetic nanoparticles to amplicons released from microbeads (top) or the pH-induced release of magnetic nanoparticles trapped in amplicons (bottom)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao Y, Chen F, Li Q, Wang L, Fan C (2015) Isothermal amplification of nucleic acids. Chem Rev 115(22):12491– 12545

    Article  CAS  Google Scholar 

  2. Ali MM, Li F, Zhang Z, Zhang K, Kang DK, Ankrum JA, Le XC, Zhao W (2014) Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem Soc Rev 43:3324–3341

  3. Pavankumar AR, Engström A, Liu J, Herthnek D, Nilsson M (2016) Proficient detection of multi-drug-resistant mycobacterium tuberculosis by padlock probes and lateral flow nucleic acid biosensors. Anal Chem 88(8):4277–4284

    Article  CAS  Google Scholar 

  4. Göransson J, Ke R, Nong RY, Howell WM, Karman A, Grawé J, Stenberg J, Granberg M, Elgh M, Herthnek D, Wikström P, Jarvius J, Nilsson M (2012) Rapid identification of bio-molecules applied for detection of biosecurity agents using rolling circle amplification. PLoS ONE 7:e31068

    Article  Google Scholar 

  5. Clausson CM, Arngården L, Ishaq O, Klaesson A, Kühnemund M, Grannas K, Koos B, Qian X, Ranefall P, Krzywkowski T, Brismar H, Nilsson M, Wählby C, Söderberg O (2015) Compaction of rolling circle amplification products increases signal integrity and signal-to-noise ratio. Sci Rep 5(1):12317

    Article  Google Scholar 

  6. Nilsson M, Gullberg M, Dahl F, Szuhai K, Raap AK (2002) Real-time monitoring of rolling-circle amplification using a modified molecular beacon design. Nucleic Acids Res 30(14):e66

    Article  Google Scholar 

  7. Jarvius J, Meln J, Göransson J, Stenberg J, Fredriksson S, Gonzalez-Rey C, Bertilsson S, Nilsson M (2006) Digital quantification using amplified single-molecule detection. Nat Methods 3:725–727

    Article  CAS  Google Scholar 

  8. Kühnemund M, Wei Q, Darai E, Wang Y, Iván H N, Yang Z, Tseng D, Ahlford A, Mathot L, Sjöblom T, Ozcan A, Nilsson M (2017) Targeted DNA sequencing and in situ mutation analysis using mobile phone microscopy. Nat Commun 8:13913

    Article  Google Scholar 

  9. Strömberg M, Göransson J, Gunnarsson K, Nilsson M, Svedlindh P, Strømme M (2008) Sensitive molecular diagnostics using volume-amplified magnetic nanobeads. Nano Lett 8(3):816–821

    Article  Google Scholar 

  10. Donolato M, Antunes P, de la Torre TZG, Hwu ET, Chen CH, Burger R, Rizzi G, Bosco FG, Strømme M, Boisen A, Hansen MF (2015) Quantification of rolling circle amplified DNA using magnetic nanobeads and a Blu-ray optical pick-up unit. Biosensors Bioelectron 67:649–655

    Article  CAS  Google Scholar 

  11. Mezger A, Fock J, Antunes P, FW Østerberg, Boisen A, Nilsson M, Hansen MF, Ahlford A, Donolato M (2015) Scalable DNA-based magnetic nanoparticle agglutination assay for bacterial detection in patient samples. ACS Nano 9:7374–7382

    Article  CAS  Google Scholar 

  12. Li J, Deng T, Chu X, Yang R, Jiang J, Shen G, Yu R (2010) Rolling circle amplification combined with gold nanoparticle aggregates for highly sensitive identification of single-nucleotide polymorphisms. Anal Chem 82:2811–16

    Article  CAS  Google Scholar 

  13. Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9:3110–3117

    Article  CAS  Google Scholar 

  14. Gijs MA, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563

    Article  CAS  Google Scholar 

  15. Rödiger S, Liebsch C, Schmidt C, Lehmann W, Resch-Genger U, Schedler U, Schierack P (2014) Nucleic acid detection based on the use of microbeads: a review. Microchim Acta 181:1151–1168

    Article  Google Scholar 

  16. Van Reenen A, De Jong AM, Den Toonder JM, Prins MW (2014) Integrated lab-on-chip biosensing systems based on magnetic particle actuation-a comprehensive review. Lab Chip 14(12):1966–1986

    Article  Google Scholar 

  17. Pandit KR, Nanayakkara IA, Cao W, Raghavan SR, White IM (2015) Capture and direct amplification of DNA on chitosan microparticles in a single PCR-optimal solution. Anal Chem 87:11022–11029

    Article  CAS  Google Scholar 

  18. Neumann F, Hernández-Neuta I, Grabbe M, Madaboosi N, Albert J, Nilsson M (2018) Padlock probe assay for detection and subtyping of seasonal influenza. Clin Chem 64:e12

    Article  Google Scholar 

  19. Palanisamy R, Connolly AR, Trau M (2010) Considerations of solid-phase DNA amplification. ACS Bioconjugate Chem 21:690–695

    Article  CAS  Google Scholar 

  20. Schopf E, Fischer NO, Chen Y, Tok JB (2008) Sensitive and selective viral DNA detection assay via microbead-based rolling circle amplification. Bioorganic Med Chem Lett 18:5871–5874

    Article  CAS  Google Scholar 

  21. Sato K, Ishii R, Sasaki N, Sato K, Nilsson M (2013) Bead-based padlock rolling circle amplification for single DNA molecule counting. Anal Biochem 437(1):43–45

    Article  CAS  Google Scholar 

  22. Sato K, Tachihara A, Renberg B, Mawatari K, Sato K, Tanaka Y, Jarvius J, Nilsson M, Kitamori T (2010) Microbead-based rolling circle amplification in a microchip for sensitive DNA detection. Lab Chip 10:1262–1266

    Article  CAS  Google Scholar 

  23. Ahlford A, Conde A, Sabourin D, Kutter J, Nilsson M, Dufva M, Brivio M (2011) A microfluidic platform for personalized cancer diagnostics by padlock probes ligation and circle-to-circle amplification. In: 15th International conference on miniaturized systems for chemistry and life sciences 2011 (MicroTAS 2011), pp 61–63

  24. Kühnemund M, Witters D, Nilsson M, Lammertyn J (2014) Circle-to-circle amplification on a digital microfluidic chip for amplified single molecule detection. Lab Chip 14:2983

    Article  Google Scholar 

  25. Hernández-Neuta I, Pereiro I, Ahlford A, Ferraro D, Zhang Q, Viovy JL, Descroix S, Nilsson M (2018) Microfluidic magnetic fluidized bed for DNA analysis in continuous flow mode. Biosensors Bioelectron 102:531–539

    Article  Google Scholar 

  26. Schopf E, Liu Y, Deng JC, Yang S, Cheng G, Chen Y (2011) Mycobacterium tuberculosis detection via rolling circle amplification. Anal Methods 3:267–273

    Article  CAS  Google Scholar 

  27. Minero GAS, Nogueira C, Rizzi G, Tian B, Fock J, Donolato M, Strömberg M, Hansen MF (2017) Sequence-specific validation of LAMP amplicons in real-time optomagnetic detection of Dengue serotype 2 synthetic DNA. Analyst 142:3441– 3450

    Article  CAS  Google Scholar 

  28. Fock J, Balceris C, Costo R, Zeng L, Ludwig F, Hansen MF (2017) Field-dependent dynamic responses from dilute magnetic nanoparticle dispersions. Nanoscale 10:2052–2066

    Article  Google Scholar 

  29. Strömberg M, Zardán Gómez de la Torre T, Göransson J, Gunnarsson K, Nilsson M, Strømme M, Svedlindh P (2008) Microscopic mechanisms influencing the volume amplified magnetic nanobead detection assay. Biosensors Bioelectron 24:696–703

    Article  Google Scholar 

  30. Strömberg M, Zardán Gómez De La Torre T, Göransson J, Gunnarsson K, Nilsson M, Svedlindh P, Strømme M (2009) Multiplex detection of DNA sequences using the volume-amplified magnetic nanobead detection assay. Anal Chem 81:3398–3406

    Article  Google Scholar 

  31. Zardán Gómez De La Torre T, Strömberg M, Russell C, Göransson J, Nilsson M, Svedlindh P, Strømme M (2010) Investigation of immobilization of functionalized magnetic nanobeads in rolling circle amplified DNA coils. J Phys Chem B 114:3707–3713

    Article  Google Scholar 

  32. Oishi M (2015) Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification. Anal Bioanal Chem 407(14):4165–72

    Article  CAS  Google Scholar 

  33. Zhang S, Wu Z, Shen G, Yu R (2009) A label-free strategy for SNP detection with high fidelity and sensitivity based on ligation-rolling circle amplification and intercalating of methylene blue. Biosensors Bioelectron 24:3201–3207

    Article  CAS  Google Scholar 

  34. Schopf E, Chen Y (2010) Attomole DNA detection assay via rolling circle amplification and single molecule detection. Anal Biochem 397:115–117

    Article  CAS  Google Scholar 

  35. Yang X, Yang K, Zhao X, Lin Z, Liu Z, Luo S, Zhang Y, Wang Y, Fu W (2017) Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification. Analyst 142(24):4661–4669

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mats Nilsson (SciLifeLab, Stockholm) for design of Influenza target and probes as well as for the routine protocols of MMB-free circularization and rolling circle amplification.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gabriel Antonio S. Minero or Mikkel Fougt Hansen.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by DFF project (#4184-00121B). VC thanks Erasmus+ Program (Key action 1 A.Y. 2017-18) and Roberto Raiteri for sponsoring of the Erasmus program. JF acknowledges MUDP for support (MST-141-01415).

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.48 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minero, G.A.S., Cangiano, V., Garbarino, F. et al. Integration of microbead DNA handling with optomagnetic detection in rolling circle amplification assays. Microchim Acta 186, 528 (2019). https://doi.org/10.1007/s00604-019-3636-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3636-x

Keywords

Navigation