Magnetic nanocomposite-based SELDI probe for extraction and detection of drugs, amino acids and fatty acids


The use of carbon black-Fe3O4 magnetic nanocomposite (CB-Fe3O4) as a probe for surface-enhanced laser desorption ionization mass spectrometry (SELDI-MS) with a high extraction efficiency and sensitive detection is described. The magnetic nanocomposite was synthesized and fully characterized using X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectroscopy, transmission electron microscopy and nitrogen sorption. The feasibility of the SELDI probe to extract and detect three classes of drugs (labetalol, metoprolol, doxepin, desipramine, triprolidine and methapyrilene) spiked in wine is demonstrated. All the drugs were successfully and reproducibly extracted and detected with high efficiency and with limits of detection (LOD) between 1 and 1000 pg mL−1. The adsorption capacity of the nanocomposite for the drugs was evaluated by UV-Vis spectroscopy. The results showed that 27.8–36.1% of the drugs were adsorbed on the magnetic probe within 3 min. The nanocomposite was also applied for efficient analysis of amino acids and fatty acids. Both types of analytes can be extracted within a few minutes and then successfully quantified by SELDI-MS.

A schematic presentation of carbon black-Fe3O4 magnetic probe for SELDI analysis of small molecules. The probe containing the analyte(s) is collected with the aid of a magnet and deposited on the target plate for mass spectrometry analysis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Equitz TR, Rodriguez-Cruz SE (2017) High-throughput analysis of controlled substances: combining multiple injections in a single experimental run (MISER) and liquid chromatography–mass spectrometry (LC-MS). Forensic Chem 5:8–15

    CAS  Article  Google Scholar 

  2. 2.

    Lim AY, Ma J, Boey YCF (2012) Development of nanomaterials for SALDI-MS analysis in forensics. Adv Mater 24(30):4211–4216

    CAS  Article  Google Scholar 

  3. 3.

    Kong X et al (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 77(1):259–265

    CAS  Article  Google Scholar 

  4. 4.

    Huang X, Liu Q, Jiang G (2019) Tuning the performance of graphene as a dual-ion-mode MALDI matrix by chemical functionalization and sample incubation. Talanta 199:532–540

    CAS  Article  Google Scholar 

  5. 5.

    Grim DM, Siegel J, Allison J (2002) Evaluation of laser desorption mass spectrometry and UV accelerated aging of dyes on paper as tools for the evaluation of a questioned document. J Forensic Sci 47(6):1265–1273

    CAS  PubMed  Google Scholar 

  6. 6.

    Amin MO, Madkour M, Al-Hetlani E (2018) Metal oxide nanoparticles for latent fingerprint visualization and analysis of small drug molecules using surface-assisted laser desorption/ionization mass spectrometry. Anal Bioanal Chem:1–13

  7. 7.

    Al-Hetlani E et al (2018) CeO2-CB nanocomposite as a novel SALDI substrate for enhancing the detection sensitivity of pharmaceutical drug molecules in beverage samples. Talanta 185:439–445

    CAS  Article  Google Scholar 

  8. 8.

    Abdelmaksoud HH, Guinan TM, Voelcker NH (2017) Fabrication of nanostructured mesoporous germanium for application in laser desorption ionization mass spectrometry. ACS Appl Mater Interfaces 9(6):5092–5099

    CAS  Article  Google Scholar 

  9. 9.

    Hutchens TW, Yip TT (1993) New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Commun Mass Spectrom 7(7):576–580

    CAS  Article  Google Scholar 

  10. 10.

    Tang N, Tornatore P, Weinberger SR (2004) Current developments in SELDI affinity technology. Mass Spectrom Rev 23(1):34–44

    CAS  Article  Google Scholar 

  11. 11.

    Zhang Y, Wang X, Shan W, Wu B, Fan H, Yu X, Tang Y, Yang P (2005) Enrichment of low-abundance peptides and proteins on zeolite nanocrystals for direct MALDI-TOF MS analysis. Angew Chem 117(4):621–623

    Article  Google Scholar 

  12. 12.

    Tian R, Zhang H, Ye M, Jiang X, Hu L, Li X, Bao X, Zou H (2007) Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew Chem 119(6):980–983

    Article  Google Scholar 

  13. 13.

    Chen H, Deng C, Li Y, Dai Y, Yang P, Zhang X (2009) A facile synthesis approach to C8-functionalized magnetic carbonaceous polysaccharide microspheres for the highly efficient and rapid enrichment of peptides and direct MALDI-TOF-MS analysis. Adv Mater 21(21):2200–2205

    CAS  Article  Google Scholar 

  14. 14.

    Wulfkuhle JD, Liotta LA, Petricoin EF (2003) Early detection: proteomic applications for the early detection of cancer. Nat Rev Cancer 3(4):267

    CAS  Article  Google Scholar 

  15. 15.

    Zhukov TA, Johanson RA, Cantor AB, Clark RA, Tockman MS (2003) Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 40(3):267–279

    Article  Google Scholar 

  16. 16.

    Zhang W, Kong C, Lu G (2015) Super-paramagnetic nano-Fe3O4/graphene for visible-light-driven hydrogen evolution. Chem Commun 51(50):10158–10161

    CAS  Article  Google Scholar 

  17. 17.

    Dedryvere R et al (2008) X-ray photoelectron spectroscopy investigations of carbon-coated Li x FePO4 materials. Chem Mater 20(22):7164–7170

    CAS  Article  Google Scholar 

  18. 18.

    Li G, Li R, Zhou W (2017) A wire-shaped supercapacitor in micrometer size based on Fe 3 O 4 Nanosheet arrays on Fe wire. Nano-Micro Lett 9(4):46

    Article  Google Scholar 

  19. 19.

    Bhuvaneswari S, Pratheeksha PM, Anandan S, Rangappa D, Gopalan R, Rao TN (2014) Efficient reduced graphene oxide grafted porous Fe3O4 composite as a high performance anode material for Li-ion batteries. Phys Chem Chem Phys 16(11):5284–5294

    CAS  Article  Google Scholar 

  20. 20.

    Cazetta AL, Pezoti O, Bedin KC, Silva TL, Paesano Junior A, Asefa T, Almeida VC (2016) Magnetic activated carbon derived from biomass waste by concurrent synthesis: efficient adsorbent for toxic dyes. ACS Sustain Chem Eng 4(3):1058–1068

    CAS  Article  Google Scholar 

  21. 21.

    Ungar T et al (2002) Microstructure of carbon blacks determined by X-ray diffraction profile analysis. Carbon 40(6):929–937

    CAS  Article  Google Scholar 

  22. 22.

    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742

    CAS  Article  Google Scholar 

  23. 23.

    Hu X, Liu B, Deng Y, Chen H, Luo S, Sun C, Yang P, Yang S (2011) Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution. Appl Catal B Environ 107(3–4):274–283

    CAS  Article  Google Scholar 

  24. 24.

    Shu J, Cheng S, Xia H, Zhang L, Peng J, Li C, Zhang S (2017) Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue. RSC Adv 7(24):14395–14405

    CAS  Article  Google Scholar 

  25. 25.

    Yagnik GB, Hansen RL, Korte AR, Reichert MD, Vela J, Lee YJ (2016) Large scale nanoparticle screening for small molecule analysis in laser desorption ionization mass spectrometry. Anal Chem 88(18):8926–8930

    CAS  Article  Google Scholar 

  26. 26.

    Mohan AN, Manoj B (2012) Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int J Electrochem Sci 7:9537–9549

    CAS  Google Scholar 

  27. 27.

    Amiri A, Baghayeri M, Sedighi M (2018) Magnetic solid-phase extraction of polycyclic aromatic hydrocarbons using a graphene oxide/Fe3O4@ polystyrene nanocomposite. Microchim Acta 185(8):393

    Article  Google Scholar 

  28. 28.

    Chiang C-K, Chen W-T, Chang H-T (2011) Nanoparticle-based mass spectrometry for the analysis of biomolecules. Chem Soc Rev 40(3):1269–1281

    CAS  Article  Google Scholar 

  29. 29.

    Panwar V, Kumar P, Bansal A, Ray SS, Jain SL (2015) PEGylated magnetic nanoparticles (PEG@ Fe3O4) as cost effective alternative for oxidative cyanation of tertiary amines via CH activation. Appl Catal A Gen 498:25–31

    CAS  Article  Google Scholar 

  30. 30.

    Thommes, M., et al. (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report), In: Pure and applied chemistry. p. 1051

  31. 31.

    Tang H-W, Ng KM, Lu W, Che CM (2009) Ion desorption efficiency and internal energy transfer in carbon-based surface-assisted laser desorption/ionization mass spectrometry: desorption mechanism (s) and the design of SALDI substrates. Anal Chem 81(12):4720–4729

    CAS  Article  Google Scholar 

  32. 32.

    Amin MO, Al-Hetlani E (2019) Tailoring the surface chemistry of SiO2-based monoliths to enhance the selectivity of SALDI-MS analysis of small molecules. Talanta 200:458–467

    CAS  Article  Google Scholar 

  33. 33.

    Lim AY, Gu F, Ma Z, Ma J, Rowell F (2011) Doped amorphous silica nanoparticles as enhancing agents for surface-assisted time-of-flight mass spectrometry. Analyst 136(13):2775–2785

    CAS  Article  Google Scholar 

  34. 34.

    Ai L, Zhang C, Liao F, Wang Y, Li M, Meng L, Jiang J (2011) Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: kinetic, isotherm and mechanism analysis. J Hazard Mater 198:282–290

    CAS  Article  Google Scholar 

Download references


The authors would like to thank the RSPU Facilities no. GS 01/01, GS 01/05 and GS 02/01 and the Chemistry Department of Kuwait University for facilitating the required Raman spectroscopy and MALDI-TOF-MS analyses. The Nanoscopy Science Centre is also gratefully acknowledged for the TEM images.

Author information



Corresponding authors

Correspondence to Mohamed O. Amin or Entesar Al-Hetlani.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amin, M.O., D’Cruz, B., Madkour, M. et al. Magnetic nanocomposite-based SELDI probe for extraction and detection of drugs, amino acids and fatty acids. Microchim Acta 186, 503 (2019).

Download citation


  • Surface-enhanced laser desorption ionization mass spectrometry
  • Magnetic probe
  • Small molecules
  • Extraction
  • β-Blockers
  • Antidepressant
  • Antihistamine
  • Biomolecules