A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly

Abstract

An amplified electrochemical biosensing scheme is described for lead(II) ions. It is making use of DNAzyme-assisted target recycling and catalytic hairpin assembly (CHA). The hairpin strand (substrate probe for the Pb2+-based DNAzyme; referred to as SP) is composed of trigger probe (TP) and a capture probe 1 attached to gold nanoparticles (AuNP). In the presence of the enzyme probe that partially hybridizes with SP, the introduction of Pb2+ triggers target recycling and drives the highly amplified translation of target Pb(II) to TP. The CHA reaction is further initiated by TP. The modified AuNP act as the connecting unit, and this leads to the formation of a 3D DNA-AuNP network on the electrode (which is the third amplification step). It can bind the positively charged redox mediator RuHex via electrostatic interaction for electrochemical detection. This biosensor has a low detection limit (95 pM) and any analytical range that covers the 100 pM to 5 μM Pb(II) concentration range. It is selective over other divalent metal ions. It was applied to the determination of Pb2+ in spiked real-world samples.

Schematic presentation of the electrochemical biosensor. The triply amplified electrochemical assay is based on the use of DNAzyme-assisted target recycling with catalytic hairpin assembly (CHA) reaction for sensitive and selective determination of lead ion (Pb2+). AuNP: gold nanoparticles; SP: substrate probe; EP: enzyme probe.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Dong JP, Fang QH, He HB, Zhang Y, Xu JQ, Sun YB (2015) Electrochemical sensor based on EDTA intercalated into layered double hydroxides of magnesium and aluminum for ultra trace level detection of lead (II). Microchim Acta 182(3–4):653–659

    CAS  Article  Google Scholar 

  2. 2.

    Wang LL, Wen YL, Li LY, Yang X, Jia NQ, Li W, Meng JR, Duan ML, Sun XG, Liu G (2018) Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens Bioelectron 115:91–96

    CAS  Article  Google Scholar 

  3. 3.

    Ghaedi M, Ahmadi F, Shokrollahi A (2007) Simultaneous preconcentration and determination of copper, nickel, cobalt and lead ions content by flame atomic absorption spectrometry. J Hazard Mater 142(1–2):272–278

    CAS  Article  Google Scholar 

  4. 4.

    Shum SCK, Pang HM, Houk RS (1992) Speciation of mercury and lead compounds by microbore column liquid chromatography-inductively coupled plasma mass spectrometry with direct injection nebulization. Anal Chem 64(20):2444–2450

    CAS  Article  Google Scholar 

  5. 5.

    Badiei HR, Liu C, Karanassios V (2013) Taking part of the lab to the sample: on-site electrodeposition of Pb followed by measurement in a lab using electrothermal, near-torch vaporization sample introduction and inductively coupled plasma-atomic emission spectrometry. Microchem J 108:131–136

    CAS  Article  Google Scholar 

  6. 6.

    Wang HL, Ou LML, Suo YR, Yu HZ (2011) Computer-readable DNAzyme assay on disc for ppb-level lead detection. Anal Chem 83(5):1557–1563

    CAS  Article  Google Scholar 

  7. 7.

    Wang YM, Silverman SK (2005) Efficient one-step synthesis of biologically related lariat RNAs by a deoxyribozyme. Angew Chem Int Ed 44(36):5863–5866

    CAS  Article  Google Scholar 

  8. 8.

    Faulhammer DCD, Famulok PDM (1996) The Ca2+ ion as a cofactor for a novel RNA-cleaving deoxyribozyme. Angew Chem Int Ed Eng 35(23–24):2837–2841

    CAS  Article  Google Scholar 

  9. 9.

    Yun W, Cai DZ, Jiang JL, Zhao PX, Huang Y, Sang G (2016) Enzyme-free and label-free ultra-sensitive colorimetric detection of Pb2+ using molecular beacon and DNAzyme based amplification strategy. Biosens Bioelectron 80:187–193

    CAS  Article  Google Scholar 

  10. 10.

    Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc 126(39):12298–12305

    CAS  Article  Google Scholar 

  11. 11.

    Yun W, Du XQ, Liao JS, Sang G, Chen L, Li N, Yang LZ (2018) Three-way DNA junction based platform for ultra-sensitive fluorometric detection of multiple metal ions as exemplified for Cu(II), Mg(II) and Pb(II). Microchim Acta 185:306. https://doi.org/10.1007/s00604-018-2836-0

    CAS  Article  Google Scholar 

  12. 12.

    Mazumdar D, Nagraj N, Kim HK, Meng XL, Brown AK, Sun Q, Li W, Lu Y (2009) Activity, folding and Z-DNA formation of the 8-17 DNAzyme in the presence of monovalent ions. J Am Chem Soc 131(15):5506–5515

    CAS  Article  Google Scholar 

  13. 13.

    Zhang Y, Wang LJ, Zhang CY (2014) Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chem Commun 50(15):1909–1911

    CAS  Article  Google Scholar 

  14. 14.

    Zhuang JY, Fu LB, Xu MD, Zhou Q, Chen GN, Tang DP (2013) DNAzyme-based magneto-controlled electronic switch for picomolar detection of lead (II) coupling with DNA-based hybridization chain reaction. Biosens Bioelectron 45:52–57

    CAS  Article  Google Scholar 

  15. 15.

    Liu SF, Wei WJ, Sun XY, Wang L (2016) Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification. Biosens Bioelectron 83:33–38

    CAS  Article  Google Scholar 

  16. 16.

    Cai W, Xie SB, Zhang J, Tang DY, Tang Y (2018) Immobilized-free miniaturized electrochemical sensing system for Pb2+ detection based on dual Pb2+-DNAzyme assistant feedback amplification strategy. Biosens Bioelectron 117:312–318

    CAS  Article  Google Scholar 

  17. 17.

    Pei H, Li F, Wan Y, Wei M, Liu HJ, Su Y, Chen N, Huang Q, Fan CH (2012) Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc 134(29):11876–11879

    CAS  Article  Google Scholar 

  18. 18.

    Wen JL, Chen JH, Zhuang L, Zhou SG (2016) Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid. Biosens Bioelectron 79:656–660

    CAS  Article  Google Scholar 

  19. 19.

    Li X, Xie JQ, Jiang BY, Yuan R, Xiang Y (2017) Metallo-toehold-activated catalytic hairpin assembly formation of three-way DNAzyme junctions for amplified fluorescent detection of Hg2+. ACS Appl Mater Interfaces 9(7):5733–5738

    CAS  Article  Google Scholar 

  20. 20.

    Yu S, Wang YY, Jiang LP, Bi S, Zhu JJ (2018) Cascade amplification-mediated in situ hot-spot assembly for microRNA detection and molecular logic gate operations. Anal Chem 90(7):4544–4551

    CAS  Article  Google Scholar 

  21. 21.

    Han C, Li RG, Li H, Liu S, Xu CG, Wang JF, Wang Y, Huang JD (2017) Ultrasensitive voltammetric determination of kanamycin using a target-triggered cascade enzymatic recycling couple along with DNAzyme amplification. Microchim Acta 184(8):2941–2948

    CAS  Article  Google Scholar 

  22. 22.

    Yang XR, Xu J, Tang XM, Liu HX, Tian DB (2010) A novel electrochemical DNAzyme sensor for the amplified detection of Pb2+ ions. Chem Commun 46(18):3107–3109

    CAS  Article  Google Scholar 

  23. 23.

    Shen L, Chen Z, Li YH, He SL, Xie SB, Xu XD, Liang ZW, Meng X, Li Q, Zhu ZW, Li MX, Le XC, Shao YH (2008) Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Anal Chem 80(16):6323–6328

    CAS  Article  Google Scholar 

  24. 24.

    Wang ZH, Sun N, He Y, Liu Y, Li JH (2014) DNA assembled gold nanoparticles polymeric network blocks modular highly sensitive electrochemical biosensors for protein kinase activity analysis and inhibition. Anal Chem 86(12):6153–6159

    CAS  Article  Google Scholar 

  25. 25.

    Chen BB, Wang ZB, Hu DX, Ma QQ, Huang LN, Xv CY, Guo ZY, Jiang XH (2014) Scanometric nanomolar lead (II) detection using DNA-functionalized gold nanoparticles and silver stain enhancement. Sensor Actuat B-Chem 200:310–316

    CAS  Article  Google Scholar 

  26. 26.

    Sun HX, Yu LJ, Chen HB, Xiang JF, Zhang XF, Shi YH, Yang QF, Guan AJ, Li Q, Tang YL (2015) A colorimetric lead (II) ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye. Talanta 136:210–214

    CAS  Article  Google Scholar 

  27. 27.

    Gong L, Kuai HL, Ren SL, Zhao XH, Huan SY, Zhang XB, Tan WH (2015) Ag nanocluster-based label-free catalytic and molecular beacons for amplified biosensing. Chem Commun 51(60):12095–12098

    CAS  Article  Google Scholar 

  28. 28.

    Wen ZB, Liang WB, Zhuo Y, Xiong CY, Zheng YN, Yuan R, Chai YQ (2017) An efficient target-intermediate recycling amplification strategy for ultrasensitive fluorescence assay of intracellular lead ions. Chem Commun 53(54):7525–7528

    CAS  Article  Google Scholar 

  29. 29.

    Zhang BT, Lu LL, Hu QC, Huang F, Lin Z (2014) ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosens Bioelectron 56:243–249

    CAS  Article  Google Scholar 

  30. 30.

    Fu CC, Xu WQ, Wang HL, Ding H, Liang LJ, Cong M, Xu SP (2014) DNAzyme-based plasmonic nanomachine for ultrasensitive selective surface-enhanced Raman scattering detection of lead ions via a particle-on-a-film hot spot construction. Anal Chem 86(23):11494–11497

    CAS  Article  Google Scholar 

  31. 31.

    Zhang YL, Xiao SX, Li HZ, Liu HJ, Pang PF, Wang HB, Wu Z, Yang WR (2016) A Pb2+-ion electrochemical biosensor based on single-stranded DNAzyme catalytic beacon. Sensor Actuat B-Chem 222:1083–1089

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31471644), the Primary Research & Development Plan of Shandong Province (2017GSF220009), the Program for Taishan Scholer of Shandong Province (TS201712048), University of Jinan Scientific Research Fund (Youth Project XKY1421) and Doctoral Fundation of University of Jinan (XBS1431).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Su Liu.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 5.81 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wang, Y., Liu, S. et al. A triply amplified electrochemical lead(II) sensor by using a DNAzyme and via formation of a DNA-gold nanoparticle network induced by a catalytic hairpin assembly. Microchim Acta 186, 559 (2019). https://doi.org/10.1007/s00604-019-3612-5

Download citation

Keywords

  • Lead ion
  • Electrochemical
  • Biosensor
  • DNAzyme
  • Hairpin-shaped substrate probe
  • Triple signal amplification
  • Catalytic hairpin assembly
  • 3D DNA-AuNP network
  • RuHex
  • Real water samples