Aptamer-based fluorometric determination for mucin 1 using gold nanoparticles and carbon dots


A fluorometric method is described for the determination of mucin 1 (MUC1). It is based on the specific binding of MUC1 by anti-MUC1 aptamers and by exploiting the inner filter effect (IFE) exerted by gold nanoparticles (AuNPs) on the blue fluorescence of carbon dots (CDs). When CDs are mixed with AuNPs, their fluorescence is reduced due to an IFE. The IFE efficiency can be modulated by the adsorption and the aggregation state of AuNPs. The latter can be induced by addition of salt, thereby allowing the fluorescence of the CDs to recover. The aptamer is adsorbed on the AuNPs and protects the AuNPs from salt-induced aggregation which is accompanied by a color change from red to blue. If aptamer is added to a mixture of CDs and AuNPs in presence of salt, the aggregation of the AuNPs is inhibited. Thus, the blue fluorescence of the CDs (best measured at excitation/emission wavelengths of 365/448 nm) is reduced. If, however, the aptamers bind MUC1, the aptamers will be released from the surface of the AuNPs. This decreases the salt tolerance of AuNPs and leads to the recovery of the blue fluorescence. The fluorescence intensity increases with the concentration of MUC1. The method has a linear response in the 5.3 to 200 ng·mL−1 MUC1 concentration range and a lower detection limit of 5.3 ng·mL−1. The method displays excellent selectivity towards MUC1 against other proteins.

Schematic illustration of (I) the influence of IFE of free AuNPs and NaCl aggregated AuNPs and (II) the influence of specific interaction between MUC1 and aptamers on the NaCl-induced aggregation of AuNPs and the IFE efficiency.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4(1):45–60

    CAS  Article  Google Scholar 

  2. 2.

    Muller S, Alving K, Peter KJ, Zachara N, Gooley AA, Hanisch FG (1999) High density O-glycosylation on tandem repeat peptide from secretory MUC1 of T47D breast cancer cells. J Biol Chem 274(26):18165–18172

    CAS  Article  Google Scholar 

  3. 3.

    Medina M, Velez D, Asenjo JA, Egea G, Real FX, Gil J, Subiza JL (1999) Human colon adenocarcinomas express a MUC1-associated novel carbohydrate epitope on core mucin glycans defined by a monoclonal antibody (A10) raised against murine Ehrlich tumor cells. Cancer Res 59(5):1061–1070

    CAS  PubMed  Google Scholar 

  4. 4.

    Tanimoto T, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F, Kohno N (1999) MUC1 expression in intramucosal colorectal neoplasms - possible involvement in histogenesis and progression. Oncology 56(3):223–231

    CAS  Article  Google Scholar 

  5. 5.

    Willsher PC, Xing PX, Clarke CP, Ho DW, McKenzie IF (1993) Mucin 1 antigens in the serum and bronchial lavage fluid of patients with lung cancer. Cancer 72(10):2936–2942

    CAS  Article  Google Scholar 

  6. 6.

    Zhang SL, Zhang HS, Reuter VE, Slovin SF, Scher HI, Livingston PO (1998) Expression of potential target antigens for immunotherapy on primary and metastatic prostate cancers. Clin Cancer Res 4(2):295–302

    CAS  PubMed  Google Scholar 

  7. 7.

    Nacht M, Ferguson AT, Zhang W, Petroziello JM, Cook BP, Gao YH, Maguire S, Riley D, Coppola G, Landes GM, Madden SL, Sukumar S (1999) Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Res 59(21):5464–5470

    CAS  PubMed  Google Scholar 

  8. 8.

    Burdick MD, Harris A, Reid CJ, Iwamura T, Hollingsworth MA (1997) Oligosaccharides expressed an MUC1 produced by pancreatic and colon tumor cell lines. J Biol Chem 272(39):24198–24202

    CAS  Article  Google Scholar 

  9. 9.

    Walsh MD, Hohn BG, Thong W, Devine PL, Gardiner RA, Samaratunga MLTH, McGuckin MA (1994) Mucin expression by transitional cell carcinomas of the bladder. BJU Int 73(3):256–262

    CAS  Article  Google Scholar 

  10. 10.

    Beatty P, Hanisch FG, Stolz DB, Finn OJ, Ciborowski P (2001) Biochemical characterization of the soluble form of tumor antigen MUC1 isolated from sera and ascites fluid of breast and pancreatic cancer patients. Clin Cancer Res 7(3):781S–787S

    CAS  PubMed  Google Scholar 

  11. 11.

    Kotera Y, Fontenot JD, Pecher G, Metzgar RS, Finn OJ (1994) Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients. Cancer Res 54(11):2856–2860

    CAS  PubMed  Google Scholar 

  12. 12.

    Mairal T, Nadal P, Svobodova M, O'Sullivan CK (2014) FRET-based dimeric aptamer probe for selective and sensitive Lup an 1 allergen detection. Biosens Bioelectron 54:207–210

    CAS  Article  Google Scholar 

  13. 13.

    Xu JG, Zheng TT, Le JQ, Jia L (2017) Long-stem shaped multifunctional molecular beacon for highly sensitive nucleic acids determination via intramolecular and intermolecular interactions based strand displacement amplification. Analyst 142(23):4438–4445

    CAS  Article  Google Scholar 

  14. 14.

    Ferreira CSM, Matthews CS, Missailidis S (2006) DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumor Biol 27(6):289–301

    CAS  Article  Google Scholar 

  15. 15.

    Wang Y, Wang S, Lu C, Yang X (2018) Three kinds of DNA-directed nanoclusters cooperating with graphene oxide for assaying mucin 1, carcinoembryonic antigen and cancer antigen 125. Sensors Actuators B Chem 262:9–16

    Article  Google Scholar 

  16. 16.

    Zhang Y, Guo S, Huang H, Mao G, Ji X, He Z (2018) Silicon nanodot-based aptasensor for fluorescence turn-on detection of mucin 1 and targeted cancer cell imaging. Anal Chim Acta 1035:154–160

    CAS  Article  Google Scholar 

  17. 17.

    Guo Q, Li X, Shen C, Zhang S, Qi H, Li T, Yang M (2015) Electrochemical immunoassay for the protein biomarker mucin 1 and for MCF-7 cancer cells based on signal enhancement by silver nanoclusters. Microchim Acta 182(7–8):1483–1489

    CAS  Article  Google Scholar 

  18. 18.

    Ma F, Ho C, Cheng AKH, Yu H-Z (2013) Immobilization of redox-labeled hairpin DNA aptamers on gold: electrochemical quantitation of epithelial tumor marker mucin 1. ACS Omega 2(10):6809–6818

  19. 19.

    Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J (2018) An ultrasensitive signal-on electrochemical aptasensor for ochratoxin a determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens Bioelectron 117:845–851

    CAS  Article  Google Scholar 

  20. 20.

    Jiang X, Wang H, Wang H, Zhuo Y, Yuan R, Chai Y (2017) Electrochemiluminescence biosensor based on 3-D DNA Nanomachine signal probe powered by protein-aptamer binding complex for ultrasensitive mucin 1 detection. Anal Chem 89(7):4280–4286

    CAS  Article  Google Scholar 

  21. 21.

    Feng J, Wu X, Ma W, Kuang H, Xu L, Xu C (2015) A SERS active bimetallic core-satellite nanostructure for the ultrasensitive detection of Mucin-1. Chem Commun 51(79):14761–14763

    CAS  Article  Google Scholar 

  22. 22.

    Yao L, Li Y, Cheng K, Pan D, Xu J, Chen W (2019) Determination of 17-estradiol by surface-enhanced Raman spectroscopy merged with hybridization chain reaction amplification on au@ag core-shell nanoparticles. Microchim Acta 186(2):52

    Article  Google Scholar 

  23. 23.

    Cheng AKH, Su H, Wang A, Yu HZ (2009) Aptamer-based detection of epithelial tumor marker mucin 1 with quantum dot-based fluorescence readout. Anal Chem 81(15):6130–6139

    CAS  Article  Google Scholar 

  24. 24.

    Shin S, Nam HY, Lee EJ, Jung W, Hah SS (2012) Molecular beacon-based quantitiation of epithelial tumor marker mucin 1. Bioorg Med Chem Lett 22(19):6081–6084

    CAS  Article  Google Scholar 

  25. 25.

    Li Z, Mao G, Du M, Tian S, Niu L, Ji X, He Z (2019) A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots. Microchim Acta 186(4):233

    Article  Google Scholar 

  26. 26.

    He Y, Lin Y, Tang H, Pang D (2012) A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4(6):2054–2059

    CAS  Article  Google Scholar 

  27. 27.

    Ding Y, Ling J, Wang H, Zou J, Wang K, Xiao X, Yang M (2015) Fluorescent detection of mucin 1 protein based on aptamer functionalized biocompatible carbon dots and graphene oxide. Anal Methods 7(18):7792–7798

    CAS  Article  Google Scholar 

  28. 28.

    Ma N, Jiang W, Li T, Zhang Z, Qi H, Yang M (2015) Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim Acta 182(1–2):443–447

    CAS  Article  Google Scholar 

  29. 29.

    Guo J, Li Y, Wang L, Xu J, Huang Y, Luo Y, Shen F, Sun C, Meng R (2016) Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408(2):557–566

    CAS  Article  Google Scholar 

  30. 30.

    Lv X, Zhang Y, Liu G, Du L, Wang S (2017) Aptamer-based fluorescent detection of ochratoxin a by quenching of gold nanoparticles. RSC Adv 7(27):16290–16294

    CAS  Article  Google Scholar 

  31. 31.

    Hu T, Yan X, Na W, Su X (2016) Aptamer-based aggregation assay for mercury(II) using gold nanoparticles and fluorescent CdTe quantum dots. Microchim Acta 183(7):2131–2137

    CAS  Article  Google Scholar 

  32. 32.

    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79(11):4215–4221

    CAS  Article  Google Scholar 

  33. 33.

    Tan L, Neoh KG, Kang ET, Choe WS, Su X (2012) Affinity analysis of DNA aptamer-peptide interactions using gold nanoparticles. Anal Biochem 421(2):725–731

    CAS  Article  Google Scholar 

  34. 34.

    Emrani AS, Danesh NM, Lavaee P, Ramezani M, Abnous K, Taghdisi SM (2016) Colorimetric and fluorescence quenching aptasensors for detection of streptomycin in blood serum and milk based on double-stranded DNA and gold nanoparticles. Food Chem 190:115–121

    CAS  Article  Google Scholar 

  35. 35.

    Wang M, Hu B, Ji H, Song Y, Liu J, Peng D, He L, Zhang Z (2017) Aptasensor based on hierarchical Core-Shell nanocomposites of zirconium Hexacyanoferrate nanoparticles and mesoporous mFe3O4@mC: electrochemical quantitation of epithelial tumor marker Mucin-1. Acs Omega 2(10):6809–6818

    CAS  Article  Google Scholar 

  36. 36.

    Ma C, Liu H, Tian T, Song X, Yu J, Yan M (2016) A simple and rapid detection assay for peptides based on the specific recognition of aptamer and signal amplification of hybridization chain reaction. Biosens Bioelectron 83:15–18

    CAS  Article  Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (21874088and 81874307); Shanghai Science and Technology Commission Scientific Research Project (16142200300, 17142201000 and 18142200700); Shanghai Standardization Promotion Project (17DZ2201500).

Author information



Corresponding author

Correspondence to Yan Wang.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 1602 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, Y., Pan, H. et al. Aptamer-based fluorometric determination for mucin 1 using gold nanoparticles and carbon dots. Microchim Acta 186, 544 (2019). https://doi.org/10.1007/s00604-019-3516-4

Download citation


  • Gold nanoparticles
  • Mucin 1
  • Carbon dots
  • Aptamer
  • Fluorometric determination
  • On-site detection
  • Inner filter effect