Skip to main content
Log in

Simultaneous voltammetric immunodetection of alpha-fetoprotein and glypican-3 using a glassy carbon electrode modified with magnetite-conjugated dendrimers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical immunoassay for simultaneous determination of alpha-fetoprotein (AFP) and glypican-3 (GPC-3) which are important biomarkers for early detection of hepatocellular carcinoma (HCC). Magnetite (Fe3O4) nanoparticles (NPs) were decorated with hyperbranched amino functionalized dendrimers. The modified NPs were coupled to the antibodies against AFP and GPC-3. The electrochemical behaviour of the Fe3O4 NPs and dendrimer-modified NPs were studied. A glassy carbon electrode was then modified with the NP-conjugated antibodies and biomolecular interactions were studied by using cyclic voltammetry and electrochemical impedance spectroscopy. Dual differential pulse voltammetric sensing was performed by utilizing the redox probes; Prussian blue for AFP and toluidine blue for GPC-3. The biomarkers can be detected best at voltages of 0.25 mV and – 0.54 mV (vs Ag/AgCl) for AFP and GPC-3, respectively. The low working potentials makes the method more selective over other electroactive species present in real human serum samples. Response is linear in 0.02 to 10 ng mL−1 concentration ranges of both AFP and GPC-3; and the respective detection limits are 50 and 70 pg mL−1. The method was validated by analysing spiked human serum samples. In our perception, the method is of great clinical significance as combination of GPC-3 and AFP increases the sensitivity of detection of HCC.

Schematic presentation of polyamidoamine (PAMAM) dendrimers modified magnetite (Fe3O4) nanoparticles as electrochemical sensing platform using redox dyes Prussian blue and toluidine blue for simultaneous detection of alpha-fetoprotein (AFP) and glypican-3 (GPC-3), respectively by differential pulse voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yezaz AG, Idrees M, Julie HR (2017) Review of hepatocellular carcinoma: epidemiology, etiology, and carcinogenesis. J Carcinog 16:1–17. https://doi.org/10.4103/jcar.JCar_9_16

    Article  Google Scholar 

  2. Schraml C, Kaufmann S, Rempp H, Syha R, Ketelsen D, Notohamiprodjo M, Nikolaou K (2015) Imaging of HCC – current state of the art. Diagnostics 5:513–545. https://doi.org/10.3390/diagnostics5040513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hina AT, Bobby K, Surya C, Puneet S, James C, Rainner WG, Diego RM (2014) MRI of hepatocellular carcinoma: an update of current practices. Diagn Interv Radiol 20:209–221. https://doi.org/10.5152/dir.2014.13370

    Article  Google Scholar 

  4. Liu QL, Yan XH, Yin XM, Situ B, Zhou HK, Lin L, Li B, Gan N, Zheng L (2013) Electrochemical enzyme-linked immunosorbent assay (ELISA) for α-fetoprotein based on glucose detection with multienzyme-nanoparticle amplification. Molecules 18:12675–12686. https://doi.org/10.3390/molecules181012675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sallam KM, Sheha R, El-Zahhar AA (2011) Development of solid phase radioimmunoassay system using new polymeric magnetic micro-spheres. J Radioanal Nucl Chem 290:339–345. https://doi.org/10.1007/s10967-011-1188-6

    Article  CAS  Google Scholar 

  6. Limei A, Feng G, Bifeng P, Rong H, Daxiang C (2006) Fluoroimmunoassay for antigen based on florescence quenching signal of gold nanoparticles. Anal Chem 78:1104–1106. https://doi.org/10.1021/ac051323m

    Article  CAS  Google Scholar 

  7. Sandeep KV, Venkatesh AG, Konstantinos M, Gregor C, Gunter R, Felix von S, Roland Z (2012) Nanotechnology-based biosensors and diagnostics: technology push versus industrial/healthcare requirements. BioNanoScience 2:115–126. https://doi.org/10.1007/s12668-012-0047-4

  8. Sudeshna C, Mumukshu DP, Heinrich L, Dhirendra B (2015) Dendrimer-functionalized magnetic nanoparticles: a new electrode material for electrochemical energy storage devices. J Power Sources 280:217–226. https://doi.org/10.1016/j.jpowsour.2015.01.075

    Article  CAS  Google Scholar 

  9. Rouhollah K, Gozde U, Serap Y, Gungor G, Ufuk G (2013) PAMAM dendrimer-coated iron oxide nanoparticles: synthesis and characterization of different generations. J Nanopart Res 15:1488–1486. https://doi.org/10.1007/s11051-013-1488-6

    Article  CAS  Google Scholar 

  10. Vasile E, Serafim A, Petre D, Giol D, Dubruel P, Iovu H, Stancu I (2014) Direct synthesis and morphological characterization of gold-dendrimer nanocomposites prepared using PAMAM succinamic acid dendrimers: preliminary study of the calcification potential. Sci World J 918:1–15. https://doi.org/10.1155/2014/103462

    Article  CAS  Google Scholar 

  11. Yan-Jie Z, Qiang J, Guan-Cheng L (2013) Tumor markers for hepatocellular carcinoma. Molecular and Clinical Oncology 1:593–598. https://doi.org/10.3892/mco.2013.119

    Article  CAS  Google Scholar 

  12. Hanlin W, Florencia A, Qihui Z, Brian A, Shang-Tian C, Ximing Y (2008) Glypican-3 as a useful diagnostic marker that distinguishes hepatocellular carcinoma from benign hepatocellular mass lesions. Arch Pathol Lab Med 132:1723–1728. https://doi.org/10.1043/1543-2165-132.11.1723

    Article  Google Scholar 

  13. Tangkijvanich P, Chanmee T, Komtong S, Mahachai V, Wisedopas N, Pothacharoen P, Kongtawelert P (2010) Diagnostic role of serum glypican-3 in differentiating hepatocellular carcinoma from non-malignant chronic liver disease and other liver cancers. J Gastroenterol Hepatol 25:129–137. https://doi.org/10.1111/j.1440-1746.2009.05988.x

    Article  CAS  PubMed  Google Scholar 

  14. Jiatao L, Lingfei Z, Shaogang LV, Chenzi Z, Shuai J (2017) Biomarkers for hepatocellular carcinoma. Biomark Cancer 9:1–9. https://doi.org/10.1177/1179299X16684640

    Article  Google Scholar 

  15. Sascha D, Sudeshna C, Colin G, Senoy T, Denys M, Steffen S, Michael H, Manfred A, Dhirendra B, Heinrich L (2012) Design, characterization and magnetic properties of Fe3O4-nanoparticle arrays coated with PEGylated-dendrimers. Mater Chem Phys 132:292–299. https://doi.org/10.1016/j.matchemphys.2011.11.015

    Article  CAS  Google Scholar 

  16. Milton C, Fabio FC, Pedro P, Antonio L, Pedro VB (2016) Gold nanoparticles for diagnostics: advances towards points of care. Diagnostics 6:1–20. https://doi.org/10.3390/diagnostics6040043

    Article  CAS  Google Scholar 

  17. Guifen J, Lei W, Jinxin Y, Shusheng Z (2011) Versatile electrochemiluminescence assays for cancer cells based on dendrimer/CdSe-ZnS-quantum dot nanoclusters. Anal Chem 83:3873–3880. https://doi.org/10.1021/ac200383z

    Article  CAS  Google Scholar 

  18. Joseph W (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14. https://doi.org/10.1002/elan.200403113

    Article  CAS  Google Scholar 

  19. Ming Z, Yueming Z, Shaojun D (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. https://doi.org/10.1021/ac900136z

    Article  CAS  Google Scholar 

  20. Ashok KS, Shen-Ming C (2008) Nanostructured zinc oxide particles in chemically modified electrodes for biosensor applications. Anal Lett 41:141–158. https://doi.org/10.1080/00032710701792612

    Article  CAS  Google Scholar 

  21. Ni Y, Zhu J, Zhang L, Hong J (2010) Hierarchical ZnO micro/nanoarchitectures: hydrothermal preparation, characterization and application in the detection of hydrazine. CrystEngComm 12:2213–2218. https://doi.org/10.1039/b923857n

    Article  CAS  Google Scholar 

  22. Yu Y, Cuiwen J, Tao L, Jie L, Yegeng F, Yuning W, Feiyan Y, Liping X (2017) A zinc oxide nanoflower-based electrochemical sensor for trace detection of sunset yellow. Sensors 17:1–9. https://doi.org/10.3390/s17030545

    Article  CAS  Google Scholar 

  23. Kim ES, Thomas P, Igor LM, Hedi M (2006) Biosensing with luminescent semiconductor quantum dots. Sensors 6:925–953. https://doi.org/10.3390/s6080925

    Article  Google Scholar 

  24. Cho IH, Lee J, Kim J, Kang MS, Paik JK, Ku S, Cho HM, Irudayaraj J, Kim DH (2018) Current technologies of electrochemical immunosensors: perspective on signal amplification. Sensors 18:1–18. https://doi.org/10.3390/s18010207

    Article  CAS  Google Scholar 

  25. Almira R, Arunas R (2002) Application of polypyrrole for the creation of immunosensors. Crit Rev Anal Chem 32:245–252. https://doi.org/10.1080/10408340290765542

    Article  Google Scholar 

  26. Ling D, Lee N, Hyeon T (2015) Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. Acc Chem Res 48:1276–1285. https://doi.org/10.1021/acs.accounts.5b00038

    Article  CAS  PubMed  Google Scholar 

  27. Michael H, Alan LG, Serge C (2014) Nanomaterials for biosensing applications: a review. Frontiers in Chemistry 2:1–10. https://doi.org/10.3389/fchem.2014.00063

    Article  CAS  Google Scholar 

  28. Li G, Li S, Wang Z, Xue Y, Dong C, Zeng J, Huang Y, Liang J, Zhou Z (2018) Label-free electrochemical aptasensor for detection of alpha-fetoprotein based on AFP-aptamer and thionin/reduced graphene oxide/gold nanoparticles. Anal Biochem 547:37–44. https://doi.org/10.1016/j.ab.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  29. Li S, Liang J, Zhou Z, Li G (2018) An electrochemical immunosensor for AFP measurement based on the magnetic Fe3O4@au@CS nanomaterials. Mater Sci Eng 382:1–6. https://doi.org/10.1088/1757-899X/382/2/022017

    Article  Google Scholar 

  30. Yuan Y, Li S, Xue Y, Liang J, Cui L, Li Q, Zhou S, Huang Y, Li G, Zhao Y (2017) A Fe3O4@au-based pseudo-homogeneous electrochemical immunosensor for AFP measurement using AFP antibody-GNPs-HRP as detection probe. Anal Biochem 534:56–63. https://doi.org/10.1016/j.ab.2017.07.015

    Article  CAS  PubMed  Google Scholar 

  31. Tingting X, Bo C, Jian G, Meilin C, Wenlu F, Meihui Y, Hong X (2017) Novel electrochemical immune sensor based on Hep-PGA-PPy nanoparticles for detection of α-fetoprotein in whole blood. Analytica Chimica Acta 977:36–43. https://doi.org/10.1016/j.aca.2017.04.045

    Article  CAS  Google Scholar 

  32. Xu T, Chi B, Wu F, Ma S, Zhan S, Yi M, Xu H, Mao C (2017) A sensitive label-free immunosensor for detection α-fetoprotein in whole blood based on anticoagulating magnetic nanoparticles. Biosens Bioelectron 95:87–93. https://doi.org/10.1016/j.bios.2017.04.015

    Article  CAS  PubMed  Google Scholar 

  33. Huang Z-J, Han W-D, Wu Y-H, Hu X-G (2016) Magnetic electrochemiluminescent immunoassay with quantum dots label for highly efficient detection of the tumor marker α-fetoprotein. J Electroanal Chem 785:8–13. https://doi.org/10.1016/j.jelechem.2016.11.060

    Article  CAS  Google Scholar 

  34. Lin J, Zhang H, Niu S (2015) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182:719–726. https://doi.org/10.1007/s00604-014-1378-3

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, for XRD and VSM measurements. We acknowledge Dr. Kolja Them (University of Hamburg, Germany) for performing nanoparticle characterization by TEM. Authors are grateful for financial support from Nanomission, Department of Science and Technology [Sanction No.: SR/NM/NB-1024/2016(C)], Government of India for providing research project grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudeshna Chandra.

Ethics declarations

Ethical approval was obtained from Institutional Ethics Committee (NMIMS/IEC/010/2018).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.91 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhaliwala, P., Rai, R. & Chandra, S. Simultaneous voltammetric immunodetection of alpha-fetoprotein and glypican-3 using a glassy carbon electrode modified with magnetite-conjugated dendrimers. Microchim Acta 186, 255 (2019). https://doi.org/10.1007/s00604-019-3354-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3354-4

Keywords

Navigation