Skip to main content
Log in

Double-decrease of the fluorescence of CdSe/ZnS quantum dots for the detection of zinc(II) dimethyldithiocarbamate (ziram) based on its interaction with gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A double-decrease strategy is described for ultrasensitive determination of the fungicide and vulcanization additive ziram. The assay principle is inspired by the interaction of ziram with gold nanoparticles (AuNPs). In this process, zinc ions are released, and ziram adsorption induces the aggregation of the AuNPs. The aggregated AuNPs decrease the intensity of the fluorescence of CdSe/ZnS quantum dots (QDs) capped with 3-mercaptopropionic acid via an inner filter effect. This is a result of the overlap between the absorption band of aggregated AuNPs (peaking at 680 nm) and the yellow emission of QDs (peaking at 608 nm). Zinc also exerts another decrease effect on the fluorescence of the CdSe/ZnS QDs, probably via a static quenching mechanism. Based on this double-decrease effect, ultrahigh sensitivity is achieved for ziram. The fluorescence response of the QDs (Ex / Em = 380/608 nm) is immediate. The relative fluorescence intensity is proportional to the ziram concentration within a wide range of 5 nM to 4 μM in two consecutive linear ranges. The limit of detection is as low as ~2 nM (signal-to-noise ratio of 3), which is much lower than the maximum residue limit defined by the EU pesticide database. It is also found that a similarly high sensitivity is obtained for another fungicide ferbam.

An ultrasensitive detection strategy for ziram was developed based on the doubledecrease effect of AuNPs and zinc ions on the fluorescence of CdSe/ZnS QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halls DJ (1969) The properties of dithiocarbamates a review. Microchim Acta 57:62–77

    Article  Google Scholar 

  2. Martin CA, Myers KM, Chen A, Martin NT, Barajas A, Schweizer FE, Krantz DE (2016) Ziram, a pesticide associated with increased risk for Parkinson's disease, differentially affects the presynaptic function of aminergic and glutamatergic nerve terminals at the Drosophila neuromuscular junction. Exp Neurol 275:232–241

    Article  CAS  Google Scholar 

  3. Vryzas Z, Papadakis EN, Papadopoulou-Mourkidou E (2002) Microwave-assisted extraction (MAE)−acid hydrolysis of dithiocarbamates for trace analysis in tobacco and peaches. J Agric Food Chem 50:2220–2226

    Article  CAS  Google Scholar 

  4. Cassella AR, Garrigues S, de Campos RC, de la Guardia M (2001) Fourier transform infrared spectrometric determination of Ziram. Talanta 54:1087–1094

    Article  CAS  Google Scholar 

  5. Caldas ED, Conceicao MH, Miranda MCC, de Souza L, Lima JF (2001) Determination of dithiocarbamate fungicide residues in food by a spectrophotometric method using a vertical disulfide reaction system. J Agric Food Chem 49:4521–4525

    Article  CAS  Google Scholar 

  6. Cajka T, Riddellova K, Zomer P, Mol H, Hajslova J (2011) Direct analysis of dithiocarbamate fungicides in fruit by ambient mass spectrometry. Food Addit Contam Part A 28:1372–1382

    Article  CAS  Google Scholar 

  7. Yilmaz E, Soylak M (2016) Preparation and characterization of magnetic carboxylated nanodiamonds for vortex-assisted magnetic solid-phase extraction of ziram in food and water samples. Talanta 158:152–158

    Article  CAS  Google Scholar 

  8. Chen JF, Fu FF, Wu SY, Wang J, Wang ZW (2017) Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry. J Sep Sci 40:3898–3904

    Article  CAS  Google Scholar 

  9. Mathew L, Reddy ML, Rao TP, Iyer CS, Damodaran AD (1996) Differential pulse anodic stripping voltammetric determination of ziram (a dithiocarbamate fungicide). Talanta 43:73–76

    Article  CAS  Google Scholar 

  10. Weissmahr KW, Houghton CL, Sedlak DL (1998) Analysis of the dithiocarbamate fungicides ziram, maneb, and zineb and the flotation agent ethylxanthogenate by ion-pair reversed-phase HPLC. Anal Chem 70:4800–4804

    Article  CAS  Google Scholar 

  11. Schmidt B, Christensen HB, Petersen A, Sloth JJ, Poulsen ME (2013) Method validation and analysis of nine dithiocarbamates in fruits and vegetables by LC-MS/MS. Food Addit Contam A 30:1287–1298

    Article  CAS  Google Scholar 

  12. Petha NH, Lokhande RS, Seshadri DT, Patil Raju M, Bhagat TS, Patil JG (2017) A simple pre-column derivatization method for the determination of mancozeb technical (fungicide) by reverse phase HPLC-UV. Anal Methods 9:4702–4708

    Article  CAS  Google Scholar 

  13. Zhao Y, Pérez-Segarra W, Shi Q, Wei A (2005) Dithiocarbamate assembly on gold. J Am Chem Soc 127:7328–7329

    Article  CAS  Google Scholar 

  14. Saute B, Premasiri R, Ziegler L, Narayanan R (2012) Gold nanorods as surface enhanced Raman spectroscopy substrates for sensitive and selective detection of ultra-low levels of dithiocarbamate pesticides. Analyst 137:5082–5087

    Article  CAS  Google Scholar 

  15. Giannoulis KM, Giokas DL, Tsogas GZ, Vlessidis AG (2014) Ligand-free gold nanoparticles as colorimetric probes for the non-destructive determination of total dithiocarbamate pesticides after solid phase extraction. Talanta 119:276–283

    Article  CAS  Google Scholar 

  16. Guo L, Xu Y, Ferhan AR, Chen G, Kim D-H (2013) Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc 135:12338–12345

    Article  CAS  Google Scholar 

  17. Lim S, Koo OK, You YS, Lee YE, Kim M-S, Chang P-S, Kang DH, Yu J-H, Choi YJ, Gunasekaran S (2012) Enhancing nanoparticle-based visible detection by controlling the extent of aggregation. Sci Rep 2:456

    Article  Google Scholar 

  18. Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77:7294–7303

    Article  CAS  Google Scholar 

  19. Guo J, Liu X, Gao H, Bie J, Zhang Y, Liu B, Sun C (2014) Highly sensitive turn-on fluorescent detection of cartap via a nonconjugated gold nanoparticle-quantum dot pair mediated by inner filter effect. RSC Adv 4:27228–27235

    Article  CAS  Google Scholar 

  20. Yan X, Li H, Han X, Su X (2015) A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosens Bioelectron 74:277–283

    Article  CAS  Google Scholar 

  21. Zhang R, Li N, Sun J, Gao F (2015) Colorimetric and phosphorimetric dual-signaling strategy mediated by inner filter effect for highly sensitive assay of organophosphorus pesticides. J Agric Food Chem 63:8947–8954

    Article  CAS  Google Scholar 

  22. Guo J, Li Y, Wang L, Xu J, Huang Y, Luo Y, Shen F, Sun C, Meng R (2016) Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Anal Bioanal Chem 408:557–566

    Article  CAS  Google Scholar 

  23. Lisha KP, Anshup PT (2009) Enhanced visual detection of pesticides using gold nanoparticles. J Environ Sci Health B 44:697–705

    Article  CAS  Google Scholar 

  24. Nuzzo RG, Zegarski BR, Dubois LH (1987) Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J Am Chem Soc 109:733–740

    Article  CAS  Google Scholar 

  25. Sánchez-Cortés S, Domingo C, García-Ramos JV, Aznárez JA (2001) Surface-enhanced vibrational study (SEIR and SERS) of dithiocarbamate pesticides on gold films. Langmuir 17:1157–1162

    Article  Google Scholar 

  26. Sánchez-Cortés S, Vasina M, Francioso O, Garcı́a-Ramos JV (1998) Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides. Vib Spectrosc 17:133–144

    Article  Google Scholar 

  27. Chen Y, Rosenzweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    Article  CAS  Google Scholar 

  28. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  CAS  Google Scholar 

  29. Xie HY, Liang JG, Zhang ZL, Liu Y, He ZK, Pang DW (2004) Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochim Acta A 60:2527–2530

    Article  Google Scholar 

  30. Yuan P, Walt DR (1987) Calculation for fluorescence modulation by absorbing species and its application to measurements using optical fibers. Anal Chem 59:2391–2394

    Article  CAS  Google Scholar 

  31. Cui X, Liu M, Li B (2012) Homogeneous fluorescence-based immunoassay via inner filter effect of gold nanoparticles on fluorescence of CdTe quantum dots. Analyst 137:3293–3299

    Article  CAS  Google Scholar 

  32. Rodrigues SSM, Ribeiro DSM, Soares JX, Passos MLC, Saraiva MLMFS, Santos JLM (2017) Application of nanocrystalline CdTe quantum dots in chemical analysis: implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coord Chem Rev 330:127–143

    Article  CAS  Google Scholar 

  33. Li P-H, Lin J-Y, Chen C-T, Ciou W-R, Chan P-H, Luo L, Hsu H-Y, Diau EW-G, Chen Y-C (2012) Using gold nanoclusters as selective luminescent probes for phosphate-containing metabolites. Anal Chem 84:5484–5488

    Article  CAS  Google Scholar 

  34. Fahimi-Kashani N, Hormozi-Nezhad MR (2016) Gold-nanoparticle-based colorimetric sensor array for discrimination of organophosphate pesticides. Anal Chem 88:8099–8106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31871878), Shandong Provincial Natural Science Foundation, China (No. ZR2018BC057, ZR2017LB028), and Key R&D Program of Shandong Province (No. 2018GSF118032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Jiang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 24570 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, X., Wang, J. et al. Double-decrease of the fluorescence of CdSe/ZnS quantum dots for the detection of zinc(II) dimethyldithiocarbamate (ziram) based on its interaction with gold nanoparticles. Microchim Acta 185, 472 (2018). https://doi.org/10.1007/s00604-018-2995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2995-z

Keywords

Navigation