Skip to main content
Log in

Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A voltammetric sensor is presented for the simultaneous determination of dopamine (DA) and uric acid (UA) in the presence of ascorbic acid (AA). It is based on a gold electrode (GE) modified with carboxyl-functionalized graphene (CFG) and silver nanocube functionalized DA nanospheres (AgNC@PDA-NS). The AgNC@PDA-NS nanocomposite was characterized by scanning electron microscopy and UV-Vis spectroscopy. The electrochemical behavior of the modified electrode was evaluated by electrochemical impedance spectroscopy, cyclic voltammetry and differential pulse voltammetry. The modified electrode displays good electrocatalytic activity towards DA (typically at 0.14 V vs. Ag/AgCl) and UA (typically at 0.29 V vs. Ag/AgCl) even in the presence of ascorbic acid. Response to DA is linear in the concentration range of 2.5 to 130 μM with a detection limit of 0.25 μM. Response to UA is linear in the concentration range of 10 to 130 μM with a detection limit of 1.9 μM. In addition, the sensitivity for DA and UA is 0.538 and 0.156 μA μM−1 cm−2, respectively. The modified electrode also displays good stability, selectivity and reproducibility.

The gold electrode modified with polydopamine nanospheres functionalized with silver nanocube and carboxylated graphene is used for simultaneous determination of DA and UA in the presence of AA, with wide linear range and low detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chih Y-K, Yang MC (2013) A 2,2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)-immobilized electrode for the simultaneous detection of dopamine and uricacid in the presence of ascorbic acid. Bioelectrochemistry 91:44–51. https://doi.org/10.1016/j.bioelechem.2013.01.001

    Article  CAS  PubMed  Google Scholar 

  2. Abbaspour A, Khajehzadeh A, Ghaffarinejad A (2009) A simple and cost-effective method, as an appropriate alternative for visible spectrophotometry: developm-ent of a dopamine biosensor. Analyst 134:1692–1698. https://doi.org/10.1039/B901273G

    Article  CAS  PubMed  Google Scholar 

  3. Kumbhat S, Shankaran DR, Kim SJ, Gobi KV, Joshi V, Miura N (2007) Surface plasmon resonance biosensor for dopamine using D3 dopamine receptor as a biorecognition molecule. Biosens Bioelectron 23(3):421–427. https://doi.org/10.1016/j.bios.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  4. Caussé E, Pradelles A, Dirat B, Negre-Salvayre A, Salvayre R, Couderc F (2007) Simultaneous determination of allantoin, hypoxanthine, xanthine, and uric acid in serum/plasma by CE. Electrophoresis 28(3):381–387. https://doi.org/10.1002/elps.200600205

    Article  CAS  PubMed  Google Scholar 

  5. Wang HY, Hui QS, Xu LX, Jiang JG, Sun Y (2003) Fluorimetric determination of dopamine in pharmaceutical products and urine using ethylene diamine as the fluorigenic reagent. Anal Chim Acta 497(1–2):93–99. https://doi.org/10.1016/j.aca.2003.08.050

    Article  CAS  Google Scholar 

  6. Hadi M, Rouhollahi A (2012) Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolyticcarbon film electrode. Anal Chim Acta 721:55–60. https://doi.org/10.1016/j.aca.2012.01.051

    Article  CAS  PubMed  Google Scholar 

  7. Kimmel DW, LeBlanc G, Meschievitz ME, Cliffel DE (2012) Electrochemical sensors and biosensors. Anal Chem 84(2):685–707. https://doi.org/10.1021/ac202878q

    Article  CAS  PubMed  Google Scholar 

  8. Gai PB, Zhang HJ, Zhang YS, Liu W, Zhu GB, Zhang XH, Chen JH (2013) Simultaneous electrochemical detection of ascorbic acid, dopamine and uricacid based on nitrogen doped porous carbon nanopolyhedra. J Mater Chem B 1:2742–2749. https://doi.org/10.1039/C3TB20215A

    Article  CAS  Google Scholar 

  9. O’Neill RD (1994) Microvoltammetric techniques and sensors for monitoringneurochemical dynamics in vivo: a review. Analyst 119(5):767–779. https://doi.org/10.1039/AN9941900767

    Article  PubMed  Google Scholar 

  10. Xu TQ, Zhang QL, Zheng JN, Lv ZY, Wei J, Wang AJ, Feng JJ (2014) Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using Pt nanoparticles supported on reduced graphene oxide. Electrochim Acta 115(1):109–115. https://doi.org/10.1016/j.electacta.2013.10.147

    Article  CAS  Google Scholar 

  11. Li SM, Wang YS, S-Ts H, Liao WH, Lin CW, Yang SY, Tien H-W, Ma CC, Hu CC (2015) Fabrication of a silver nanowire-reduced graphene oxide-based electrochemical biosensor and its enhanced sensitivity in the simultaneous determination of ascorbic acid, dopamine, and uric acid. J Mater Chem C 3(36):9444–9453. https://doi.org/10.1039/C5TC01564B

    Article  CAS  Google Scholar 

  12. Li H, Wang Y, Ye D, Luo J, Su B, Zhang S, Kong JL (2014) An electrochemical sensor for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan based on MWNTs bridged mesocellular graphene foam nanocomposite. Talanta 127:255–261. https://doi.org/10.1016/j.talanta.2014.03.034

    Article  CAS  PubMed  Google Scholar 

  13. Liu YL, Ai KL, Liu JH, Deng M, He YY, Lu LH (2013) Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv Mater 25(9):1353–1359. https://doi.org/10.1002/adma.201204683

    Article  CAS  PubMed  Google Scholar 

  14. Yang ZY, Feng JS, Qiao JS, Yan YM, Yu QY, Sun KN (2012) Copper oxide nanoleaves decorated multi-walled carbon nanotube as platform for glucose sensing. Anal Methods 4:1924–1926. https://doi.org/10.1039/C2AY25283J

    Article  CAS  Google Scholar 

  15. Liu YL, Ai KL, Lu LH (2014) Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem Rev 114(9):5057–5115. https://doi.org/10.1021/cr400407a

    Article  CAS  PubMed  Google Scholar 

  16. Yoon TH, Park YJ (2013) Polydopamine-assisted carbon nanotubes/Co3O4 composites for rechargeable li-air batteries. J Power Sources 244:344–353. https://doi.org/10.1016/j.jpowsour.2013.01.023

    Article  CAS  Google Scholar 

  17. Xia Y, Gates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12(10):693–713. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<693::AID-ADMA693>3.0.CO;2-J

    Article  CAS  Google Scholar 

  18. Zhang P, Shao CL, Zhang ZY, Zhang MY, Mu JB, Guo ZC, Liu YC (2011) In situ assembly of well-dispersed ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol. Nanoscale 3:3357–3363. https://doi.org/10.1039/C1NR10405E

    Article  CAS  PubMed  Google Scholar 

  19. Chen HH, Zhang Z, Cai DQ, Zhang SY, Zhang BL, Tang JL, Wu ZY (2011) A hydrogen peroxide sensor based on ag nanoparticles electrodeposited on natural nano-structure attapulgite modified glassy carbon electrode. Talanta 86:266–270. https://doi.org/10.1016/j.talanta.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Q, Cobley C, Au L, McKiernan M, Schwartz A, Wen LP, Chen JY, Xia YN (2009) Production of ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl Mater Interfaces 1(9):2044–2048. https://doi.org/10.1021/am900400a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Zhang XY, Wang LL, Wang YY (2014) A sensitive electrochemical sensor for paracetamol based on a glassy carbon electrode modified with multiwalled carbon nanotubes and dopamine nanospheres functionalized with gold nanoparticles. Microchim Acta 181(11–12):1439–1446. https://doi.org/10.1007/s00604-014-1289-3

    Article  CAS  Google Scholar 

  22. Siekkinen AR, McLellan JM, Chen JY, Xia YN (2006) Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem Phys Lett 432(4–6):491–496. https://doi.org/10.1016/j.cplett.2006.10.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mock J, Barbic M, Smith D, Schultz D, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759. https://doi.org/10.1063/1.1462610

    Article  CAS  Google Scholar 

  24. Cao XM, Luo LQ, Ding YP, Zou XL, Bian RX (2008) Electrochemical methods for simultaneous determination of dopamine and ascorbic acid using cetylpyridine bromide/chitosan composite film-modified glassy carbon electrode. Sensors Actuators B Chem 129(2):941–946. https://doi.org/10.1016/j.snb.2007.10.008

    Article  CAS  Google Scholar 

  25. Temoçin Z (2013) Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid. Sensors Actuators B Chem 176:796–802. https://doi.org/10.1016/j.snb.2012.09.078

    Article  CAS  Google Scholar 

  26. Cai WH, Lai T, Du HJ, Ye JS (2014) Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sensors Actuators B Chem 193:492–500. https://doi.org/10.1016/j.snb.2013.12.004

    Article  CAS  Google Scholar 

  27. Wang CF, Xu PP, Zhuo KL (2014) Ionic liquid functionalized graphene-based electrochemical biosensor for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid. Electroanalysis 26(1):191–198. https://doi.org/10.1002/elan.201300345

    Article  CAS  Google Scholar 

  28. Hou JG, Xu CX, Zhao DY, Zhou JH (2016) Facile fabrication of hierarchical nanoporous AuAg alloy and its highlysensitive detection towards dopamine and uric acid. Sensors Actuators B Chem 225:241–248. https://doi.org/10.1016/j.snb.2015.11.035

    Article  CAS  Google Scholar 

  29. Zhu XH, Liang Y, Zuo XX, Hu RP, Xiao X, Nan JM (2014) Novel water-soluble multi-nanopore graphene modified glassycarbon electrode for simultaneous determination of dopamine anduric acid in the presence of ascorbic acid. Electrochim Acta 143:366–373. https://doi.org/10.1016/j.electacta.2014.08.044

    Article  CAS  Google Scholar 

  30. Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183:2517–2523. https://doi.org/10.1007/s00604-016-1897-1

    Article  CAS  Google Scholar 

  31. Wang C, Li J, Shi KY, Wang Q, Zhao X, Xiong ZW, Zou XC, Wang YP (2016) Graphene coated by polydopamine/multi-walled carbon nanotubes modified electrode for highly selective detection of dopamine and uric acid in the presence of ascorbic acid. J Electroanal Chem 770:56–61. https://doi.org/10.1016/j.jelechem.2016.03.038

    Article  CAS  Google Scholar 

  32. Taleb M, Ivanov R, Bereznev S, Kazemi SH, Hussainova I (2017) Ultra-sensitive voltammetric simultaneous determination of dopamine, uric acid and ascorbic acid based on a graphene-coated alumina electrode. Microchim Acta 184:4603–4610. https://doi.org/10.1007/s00604-017-2510-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21175115), the Natural Science Foundation of Fujian province in China (2016 J01067), and the Innovation Base Foundation for Graduate Students Education of Fujian Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancai Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiang, Y., Song, Y. et al. Simultaneous determination of dopamine and uric acid in the presence of ascorbic acid using a gold electrode modified with carboxylated graphene and silver nanocube functionalized polydopamine nanospheres. Microchim Acta 185, 382 (2018). https://doi.org/10.1007/s00604-018-2922-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2922-3

Keywords

Navigation