Microchimica Acta

, 185:309 | Cite as

Magnetic microspheres modified with Ti(IV) and Nb(V) for enrichment of phosphopeptides

  • Jiebing Jiang
  • Xueni Sun
  • Xiaojian She
  • Jiajia Li
  • Yan Li
  • Chunhui Deng
  • Gengli Duan
Original Paper


Magnetic microspheres (Fe3O4) were coated with polydopamine (PDA) and loaded with the metal ions Ti(IV) and Nb(V) to give a material of type Fe3O4@PDA-Ti/Nb. It is shown to be useful for affinity chromatography and for enrichment of phosphopeptides from both standard protein solutions and real samples. For comparison, such microspheres loaded with single metal ions only (Fe3O4@PDA-Ti and Fe3O4@PDA-Nb) and their physical mixtures were also investigated under identical conditions. The binary metal ion-loaded magnetic microspheres display better enrichment efficiency than the single metal ion-loaded microspheres and their physical mixture. Both multiphosphopeptides and monophosphopeptides can be extracted. The Fe3O4@PDA-Ti/Nb microspheres exhibit ultra-high sensitivity (the lowest detection amount being 2 fmol) and selectivity at a low mass ratio such as in case of β-casein/BSA (1:1000).

Graphical abstract

Magnetic microspheres (Fe3O4) were coated with polydopamine (PDA) and loaded with the metal ions Ti(IV) and Nb(V) to give a material of type Fe3O4@PDA-Ti/Nb. Results showed its great potential as an affinity probe in phosphoproteome research due to rapid magnetic separation of phosphopeptides, ultrahigh sensitivity and selectivity, and remarkable reusability.


Metal ions combination Immobilized metal ion affinity chromatography MALDI-TOF mass spectrometry Polydopamine Affinity probe 



This work was supported by funds provided by the Natural Science Foundation of China (Project no. 21675034), the Natural Science Foundation of Shanghai (Project no. 16ZR1402300), the Outstanding Talent Plan of Fudan University (Project no. JJF301038) and the Ministry of Science and Technology of the People’s Republic of China (Grant no. 2018ZX09J18112).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_2837_MOESM1_ESM.doc (4.5 mb)
ESM 1 (DOC 4654 kb)


  1. 1.
    Hunter T (2000) Signaling--2000 and beyond. Cell 100:113–127CrossRefPubMedGoogle Scholar
  2. 2.
    Pawson T, Scott JD (2005) Protein phosphorylation in signaling-50 years and counting. Trends Biochem Sci 30:286–290. CrossRefPubMedGoogle Scholar
  3. 3.
    Cohen P (2001) The role of protein phosphorylation in human health and disease. The Sir Hans Krebs medal lecture. Eur J Biochem 268:5001–5010. CrossRefPubMedGoogle Scholar
  4. 4.
    Ashman K, Villar EL (2009) Phosphoproteomics and cancer research. Clin Transl Oncol 11:356–362. CrossRefPubMedGoogle Scholar
  5. 5.
    Di DF, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA (2011) Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J Proteome 74:1091–1103. CrossRefGoogle Scholar
  6. 6.
    Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143:1174–1189. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lai ACY, Tsai CF, Hsu CC, Sun YN, Chen YJ (2012) Complementary Fe3+- and Ti4+-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Rapid Commun Mass Spectrom 26:2186–2194. CrossRefPubMedGoogle Scholar
  8. 8.
    Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217 CrossRefPubMedGoogle Scholar
  9. 9.
    Witze ES, Old WM, Resing KA, Ahn NG (2007) Mapping protein post-translational modifications with mass spectrometry. Nat Methods 4:798–806. CrossRefPubMedGoogle Scholar
  10. 10.
    Leitner A (2010) Phosphopeptide enrichment using metal oxide affinity chromatography. Trends Anal Chem 29:177–185. CrossRefGoogle Scholar
  11. 11.
    Leitner A, Sturm M, Hudecz O, Mazanek M, Smatt JH, Linden M, Lindner W, Mechtler K (2010) Probing the phosphoproteome of HeLa cells using nanocast metal oxide microspheres for phosphopeptide enrichment. Anal Chem 82:2726–2733. CrossRefPubMedGoogle Scholar
  12. 12.
    Leitner A, Sturm M, Lindner W (2011) Tools for analyzing the phosphoproteome and other phosphorylated biomolecules: a review. Anal Chim Acta 703:19–30. CrossRefPubMedGoogle Scholar
  13. 13.
    Dunn JD, Igrisan EA, Palumbo AM, Reid GE, Bruening ML (2008) Phosphopeptide enrichment using MALDI plates modified with high-capacity polymer brushes. Anal Chem 80:5727–5735. CrossRefPubMedGoogle Scholar
  14. 14.
    Han GH, Ye ML, Zhou HJ, Jiang XN, Feng S, Jiang XG, Tian RJ, Wan DF, Zou HF, Gu JR (2008) Large-scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography. Proteomics 8:1346–1361. CrossRefPubMedGoogle Scholar
  15. 15.
    Dunn JD, Watson JT, Bruening ML (2006) Detection of phosphopeptides using Fe(III)-nitrilotriacetate complexes immobilized on a MALDI plate. Anal Chem 78:1574–1580. CrossRefPubMedGoogle Scholar
  16. 16.
    Hu L, Zhou H, Li Y, Sun S, Guo L, Ye M, Tian X, Gu J, Yang S, Zou H (2009) Profiling of endogenous serum phosphorylated peptides by titanium(IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Anal Chem 81:94–104. CrossRefPubMedGoogle Scholar
  17. 17.
    Pan C, Ye M, Liu Y, Feng S, Jiang X, Han G, Zhu J, Zou H (2006) Enrichment of phosphopeptides by Fe3+-immobilized mesoporous nanoparticles of MCM-41 for MALDI and nano-LC-MS/MS analysis. J Proteome Res 5:3114–3124. CrossRefPubMedGoogle Scholar
  18. 18.
    Posewitz MC, Tempst P (1999) Immobilized gallium(III) affinity chromatography of phosphopeptides. Anal Chem 71:2883–2892. CrossRefPubMedGoogle Scholar
  19. 19.
    Yu ZY, Han GH, Sun ST, Jiang XN, Chen R, Wang FJ, Wu RA, Ye ML, Zou HF (2009) Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides. Anal Chim Acta 636:34–41. CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao M, Deng CH, Zhang XM (2013) Synthesis of polydopamine-coated magnetic graphene for Cu2+ immobilization and application to the enrichment of low-concentration peptides for mass spectrometry analysis. ACS Appl Mater Interfaces 5:13104–13112. CrossRefPubMedGoogle Scholar
  21. 21.
    Zhou HJ, Ye ML, Dong J, Han GH, Jiang XN, Wu RN, Zou HF (2008) Specific phosphopeptide enrichment with immobilized titanium ion affinity chromatography adsorbent for phosphoproteome analysis. J Proteome Res 7:3957–3967. CrossRefPubMedGoogle Scholar
  22. 22.
    Sun XN, Liu XD, Feng JN, Li Y, Deng CH, Duan GL (2015) Hydrophilic Nb5+-immobilized magnetic core-shell microsphere--A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides. Anal Chim Acta 880:67–76. CrossRefPubMedGoogle Scholar
  23. 23.
    Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7:661–671. CrossRefPubMedGoogle Scholar
  24. 24.
    Tsai CF, Hsu CC, Hung JN, Wang YT, Choong WK, Zeng MY, Lin PY, Hong RW, Sung TY, Chen YJ (2014) Sequential phosphoproteomic enrichment through complementary metal-directed immobilized metal ion affinity chromatography. Anal Chem 86:685–693. CrossRefPubMedGoogle Scholar
  25. 25.
    Cheng G, Zhang JL, Liu YL, Sun DH, Ni JZ (2011) Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun (Camb) 47:5732–5734. CrossRefGoogle Scholar
  26. 26.
    Tsougeni K, Zerefos P, Tserepi A, Vlahou A, Garbis SD, Gogolides E (2011) TiO2-ZrO2 affinity chromatography polymeric microchip for phosphopeptide enrichment and separation. Lab Chip 11:3113–3120. CrossRefPubMedGoogle Scholar
  27. 27.
    Wang MY, Deng CH, Li Y, Zhang XM (2014) Magnetic binary metal oxides affinity probe for highly selective enrichment of phosphopeptides. ACS Appl Mater Interfaces 6:11775–11782. CrossRefPubMedGoogle Scholar
  28. 28.
    Wang MY, Sun XN, Li Y, Deng CH (2016) Design and synthesis of magnetic binary metal oxides nanocomposites through dopamine chemistry for highly selective enrichment of phosphopeptides. Proteomics 16:915–919. CrossRefPubMedGoogle Scholar
  29. 29.
    Jiang JB, Sun XN, Li Y, Deng CH, Duan GL (2018) Facile synthesis of Fe3O4@PDA core-shell microspheres functionalized with various metal ions: a systematic comparison of commonly-used metal ions for IMAC enrichment. Talanta 178:600–607. CrossRefPubMedGoogle Scholar
  30. 30.
    Zhai GJ, Wu XY, Luo Q, Wu K, Zhao Y, Liu JA, Xiong SX, Feng YQ, Yang LP, Wang FY (2014) Evaluation of serum phosphopeptides as potential cancer biomarkers by mass spectrometric absolute quantification. Talanta 125:411–417. CrossRefPubMedGoogle Scholar
  31. 31.
    Zhu J, Wang FJ, Cheng K, Song CX, Qin HQ, Hu LH, Figeys D, Ye ML, Zou HF (2013) Analysis of human serum phosphopeptidome by a focused database searching strategy. J Proteome 78:389–397. CrossRefGoogle Scholar
  32. 32.
    Wan HH, Yan JY, Yu L, Zhang XL, Xue XY, Li XL, Liang XM (2010) Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment. Talanta 82:1701–1707. CrossRefPubMedGoogle Scholar
  33. 33.
    Yan YH, Sun XN, Deng CH, Li Y, Zhang XM (2014) Metal oxide affinity chromatography platform-polydopamine coupled functional two-dimensional titania graphene nanohybrid for phosphoproteome research. Anal Chem 86:4327–4332. CrossRefPubMedGoogle Scholar
  34. 34.
    Zhang L, Gan Y, Sun H, Yu B, Jin X, Zhang R, Zhang W, Zhang L (2017) Magnetic mesoporous carbon composites incorporating hydrophilic metallic nanoparticles for enrichment of phosphopeptides prior to their determination by MALDI-TOF mass spectrometry. Microchim Acta 184(2):547–555CrossRefGoogle Scholar
  35. 35.
    Yang X, Xia Y (2016) Urea-modified metal-organic framework of type MIL-101 (Cr) for the preconcentration of phosphorylated peptides. Microchim Acta 183(7):2235–2240CrossRefGoogle Scholar
  36. 36.
    Zhao M, Deng CH, Zhang XM (2014) The design and synthesis of a hydrophilic core–shell–shell structured magnetic metal–organic framework as a novel immobilized metal ion affinity platform for phosphoproteome research. Chem Commun 50:6228–6231CrossRefGoogle Scholar
  37. 37.
    Chen YJ, Xiong ZC, Peng L, Gan YY, Zhao YM, Shen J, Qian JH, Zhang LY, Zhang WB (2015) Facile preparation of Core - Shell magnetic metal − organic framework nanoparticles for the selective capture of phosphopeptides. Appl Mater Interfaces 7:16338–16347CrossRefGoogle Scholar
  38. 38.
    Xu LN, Li LP, Jin L, Bai Y, Liu HW (2014) Guanidylfunctionalized graphene as a bifunctional adsorbent for selective enrichment of phosphopeptides. Chem Commun 50:10963–10966CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jiebing Jiang
    • 1
  • Xueni Sun
    • 2
  • Xiaojian She
    • 1
  • Jiajia Li
    • 1
  • Yan Li
    • 1
  • Chunhui Deng
    • 3
  • Gengli Duan
    • 1
  1. 1.Fudan University Affiliated Pudong Medical Center & Pharmaceutical Analysis Department, School of PharmacyFudan UniversityShanghaiChina
  2. 2.Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
  3. 3.Department of Chemistry and Institutes of Biomedical SciencesFudan UniversityShanghaiChina

Personalised recommendations