Skip to main content
Log in

Non-enzymolytic adenosine barcode-mediated dual signal amplification strategy for ultrasensitive protein detection using LC-MS/MS

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is described for the determination of proteins with LC-MS/MS enabled by a small molecule (adenosine) barcode and based on a double-recognition sandwich structure. The coagulation protein thrombin was chosen as the model analyte. Magnetic nanoparticles were functionalized with aptamer29 (MNP/apt29) and used to capture thrombin from the samples. MNP/apt29 forms a sandwich with functionalized gold nanoparticles modified with (a) aptamer15 acting as thrombin-recognizing element and (b) a large number of adenosine as mass barcodes. The sandwich formed (MNP/apt29-thrombin-apt15/AuNP/adenosine) can ben magnetically separated from the sample. Mass barcodes are subsequently released from the sandwiched structure for further analysis by adding 11-mercaptoundecanoic acid. Adenosine is then detected by LC-MS/MS as it reflects the level of thrombin with impressively amplified signal. Numerous adenosines introduced into the sandwich proportional to the target concentration further amplify the signal. Under optimized conditions, the response is linearly proportional to the thrombin concentration in the range of 0.02 nM to 10 nM, with a detection limit of 9 fM. The application of this method to the determination of thrombin in spiked plasma samples gave recoveries that ranged from 92.3% to 104.7%.

Schematic representation of a method for the determination of thrombin with LC-MS/MS. The method is based on a double-recognition sandwiched structure. With LC-MS/MS, mass barcodes (adenosine) are detected to quantify thrombin, which amplifies the detection signal impressively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD (2016) The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 13(5):273–290. https://doi.org/10.1038/nrclinonc.2016.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Benjamin Leader QJB, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39

    Article  CAS  PubMed  Google Scholar 

  3. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12):2415–2418. https://doi.org/10.1373/clinchem.2005.051532

    Article  CAS  PubMed  Google Scholar 

  4. Giljohann DA, Mirkin CA (2009) Drivers of biodiagnostic development. Nature 462(7272):461–464. https://doi.org/10.1038/nature08605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yunlei Xianyu ZW, Jiang X (2014) A plasmonic nanosensor for immunoassay via enzyme-triggered click chemistry. ACS Nano 8(12):12741–12747

    Article  CAS  PubMed  Google Scholar 

  6. Ma X, Chen Z, Kannan P, Lin Z, Qiu B, Guo L (2016) Gold nanorods as colorful chromogenic substrates for semiquantitative detection of nucleic acids, proteins, and small molecules with the naked eye. Anal Chem 88(6):3227–3234. https://doi.org/10.1021/acs.analchem.5b04621

    Article  CAS  PubMed  Google Scholar 

  7. Zhan L, Guo SZ, Song F, Gong Y, Xu F, Boulware DR, McAlpine MC, Chan WCW, Bischof JC (2017) The role of nanoparticle Design in Determining Analytical Performance of lateral flow immunoassays. Nano Lett 17(12):7207–7212. https://doi.org/10.1021/acs.nanolett.7b02302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yu CC, Kuo YY, Liang CF, Chien WT, Wu HT, Chang TC, Jan FD, Lin CC (2012) Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjug Chem 23(4):714–724. https://doi.org/10.1021/bc200396r

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Gan N, Li T, Zhou H, Li X, Cao Y, Wang L, Sang W, Hu F (2013) Ultratrace detection of C-reactive protein by a piezoelectric immunosensor based on Fe3O4@SiO2 magnetic capture nanoprobes and HRP-antibody co-immobilized nano gold as signal tags. Sensors Actuators B Chem 178:494–500. https://doi.org/10.1016/j.snb.2013.01.013

    Article  CAS  Google Scholar 

  10. Zhao Q, Li XF, Le XC (2011) Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. Anal Chem 83(24):9234–9236. https://doi.org/10.1021/ac203063z

    Article  CAS  PubMed  Google Scholar 

  11. Piella J, Bastús NG, Puntes V (2016) Size-controlled synthesis of Sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem Mater 28(4):1066–1075. https://doi.org/10.1021/acs.chemmater.5b04406

    Article  CAS  Google Scholar 

  12. Schuetze B, Mayer C, Loza K, Gocyla M, Heggen M, Epple M (2016) Conjugation of thiol-terminated molecules to ultrasmall 2 nm-gold nanoparticles leads to remarkably complex 1H-NMR spectra. J Mater Chem B 4(12):2179–2189. https://doi.org/10.1039/c5tb02443a

    Article  CAS  Google Scholar 

  13. Azubel M, Kornberg RD (2016) Synthesis of water-soluble, thiolate-protected gold nanoparticles uniform in size. Nano Lett 16(5):3348–3351. https://doi.org/10.1021/acs.nanolett.6b00981

    Article  CAS  PubMed  Google Scholar 

  14. Zhou J, Rossi J (2017) Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov 16(3):181–202. https://doi.org/10.1038/nrd.2016.199

    Article  CAS  PubMed  Google Scholar 

  15. van den Kieboom CH, van der Beek SL, Mészáros T, Gyurcsányi RE, Ferwerda G, de Jonge MI (2015) Aptasensors for viral diagnostics. TrAC Trends Anal Chem 74:58–67. https://doi.org/10.1016/j.trac.2015.05.012

    Article  CAS  Google Scholar 

  16. Liu Z, Liu H, Wang L, Su X (2016) A label-free fluorescence biosensor for highly sensitive detection of lectin based on carboxymethyl chitosan-quantum dots and gold nanoparticles. Anal Chim Acta 932:88–97. https://doi.org/10.1016/j.aca.2016.05.025

    Article  CAS  PubMed  Google Scholar 

  17. Wang L, Yang W, Li T, Li D, Cui Z, Wang Y, Ji S, Song Q, Shu C, Ding L (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184(9):3145–3151. https://doi.org/10.1007/s00604-017-2327-8

    Article  CAS  Google Scholar 

  18. Meirinho SG, Dias LG, Peres AM, Rodrigues LR (2017) Electrochemical aptasensor for human osteopontin detection using a DNA aptamer selected by SELEX. Anal Chim Acta 987:25–37. https://doi.org/10.1016/j.aca.2017.07.071

    Article  CAS  PubMed  Google Scholar 

  19. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, Chen L, Choo J (2017) Simultaneous detection of dual prostate specific antigens using surface-enhanced Raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11(5):4926–4933. https://doi.org/10.1021/acsnano.7b01536

    Article  CAS  PubMed  Google Scholar 

  20. El-Said WA, Fouad DM, El-Safty SA (2016) Ultrasensitive label-free detection of cardiac biomarker myoglobin based on surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 228:401–409. https://doi.org/10.1016/j.snb.2016.01.041

    Article  CAS  Google Scholar 

  21. Jazayeri MH, Amani H, Pourfatollah AA, Avan A, Ferns GA, Pazoki-Toroudi H (2016) Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies. Cancer Gene Ther 23(10):365–369. https://doi.org/10.1038/cgt.2016.42

    Article  CAS  PubMed  Google Scholar 

  22. Joanna Zheng JM, Yongxin Zhu BX, Olah T (2014) Application and challenges in using LC–MS assays for absolute quantitative analysis of therapeutic proteins in drug discovery. Bioanalysis 6(6):21

    Google Scholar 

  23. Li H, Ortiz R, Tran LT, Salimi-Moosavi H, Malella J, James CA, Lee JW (2013) Simultaneous analysis of multiple monoclonal antibody biotherapeutics by LC-MS/MS method in rat plasma following cassette-dosing. AAPS J 15(2):337–346. https://doi.org/10.1208/s12248-012-9435-5

    Article  CAS  PubMed  Google Scholar 

  24. An B, Zhang M, Johnson RW, Qu J (2015) Surfactant-aided precipitation/on-pellet-digestion (SOD) procedure provides robust and rapid sample preparation for reproducible, accurate and sensitive LC/MS quantification of therapeutic protein in plasma and tissues. Anal Chem 87(7):4023–4029. https://doi.org/10.1021/acs.analchem.5b00350

    Article  CAS  PubMed  Google Scholar 

  25. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1(1):246–252. https://doi.org/10.1038/nprot.2006.38

    Article  CAS  PubMed  Google Scholar 

  26. Sheng H, Ye BC (2009) Different strategies of covalent attachment of oligonucleotide probe onto glass beads and the hybridization properties. Appl Biochem Biotechnol 152(1):54–65. https://doi.org/10.1007/s12010-008-8245-9

    Article  CAS  PubMed  Google Scholar 

  27. Jwa-Min Nam CST, Mirkint CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301(5641):3

    Google Scholar 

  28. Bernd Giese DM (2002) Surface-enhanced Raman spectroscopic and density functional theory study of adenine adsorption to silver surfaces. J Phys Chem B 106:12

    Article  CAS  Google Scholar 

  29. Kundu J, ON BGJ, Zhang D, Lal S, Barhoumi A, Scuseria GE, Halas NJ (2009) Adenine− and adenosine monophosphate (AMP)−gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies. J Phys Chem C 113:8

    Google Scholar 

  30. Siriwardana K, Gadogbe M, Ansar SM, Vasquez ES, Collier WE, Zou S, Walters KB, Zhang D (2014) Ligand adsorption and exchange on Pegylated gold nanoparticles. J Phys Chem C 118(20):11111–11119. https://doi.org/10.1021/jp501391x

    Article  CAS  Google Scholar 

  31. Zhuo B, Li Y, Huang X, Lin Y, Chen Y, Gao W (2015) An electrochemiluminescence aptasensing platform based on ferrocene-graphene nanosheets for simple and rapid detection of thrombin. Sensors Actuators B Chem 208:518–524. https://doi.org/10.1016/j.snb.2014.11.064

    Article  CAS  Google Scholar 

  32. Bai Y, Feng F, Zhao L, Wang C, Wang H, Tian M, Qin J, Duan Y, He X (2013) Aptamer/thrombin/aptamer-AuNPs sandwich enhanced surface plasmon resonance sensor for the detection of subnanomolar thrombin. Biosens Bioelectron 47:265–270. https://doi.org/10.1016/j.bios.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  33. Liu X, Hua X, Fan Q, Chao J, Su S, Huang YQ, Wang L, Huang W (2015) Thioflavin T as an efficient G-quadruplex inducer for the highly sensitive detection of thrombin using a new foster resonance energy transfer system. ACS Appl Mater Interfaces 7(30):16458–16465. https://doi.org/10.1021/acsami.5b03662

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial support of the National Natural Science Foundation of China (No.81573387, No.81703472, No.81603072 and No.81560695). Also thanks for the support from the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0683).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ding.

Ethics declarations

The author(s) declare that they have no competing interests.

Ethical approval

Institutional Review Board approval was not required because the study is not on animals.

Informed consent

Written informed consent was not required for this study because the study is not on human subjects.

Electronic supplementary material

ESM 1

(DOC 399 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Li, T., Shu, C. et al. Non-enzymolytic adenosine barcode-mediated dual signal amplification strategy for ultrasensitive protein detection using LC-MS/MS. Microchim Acta 185, 293 (2018). https://doi.org/10.1007/s00604-018-2832-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2832-4

Keywords

Navigation