Skip to main content
Log in

Polydopamine-based molecularly imprinting polymers on magnetic nanoparticles for recognition and enrichment of ochratoxins prior to their determination by HPLC

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A polydopamine-based molecularly imprinted polymer was deposited on the surface of magnetite (ferroferric oxide) nanoparticles (Fe3O4@PDA MIPs) and is shown to be an efficient and fairly specific sorbent for the extraction of various ochratoxins. The MIPs were characterized by IR spectroscopy and transmission electron microscopy. The adsorption capacities, evaluated through the langmuir adsorption isotherm model, are 1.8, 0.23 and 0.17 mg·g−1 for ochratoxin A, ochratoxin B and ochratoxin C, respectively. Parameters such as the amount of magnetic MIPs, pH value, time for ultrasonication, elution solvent and volume were optimized. Following desorption from the MIP with acetonitrile, the ochratoxins were quantified by HPLC with fluorometric detection. Under optimal experimental conditions, the calibration plots are linear in the range of 0.01–1.0 ng·mL−1 of OTA, 0.02–2.0 ng·mL−1 of OTB, and 0.002–0.2 ng·mL−1 of OTC. The LODs are between 1.8 and 18 pg·mL−1, and the recoveries from spiked samples are 71.0% - 88.5%, with RSDs of 2.3–3.8% in case of rice and wine samples. The MIPs can be re-used for at least 7 times.

Schematic of the preparation of a magnetic molecularly imprinted polymer based on self-polymerization of dopamine in weakly alkaline solution. Ochratoxins are recognized owing to homologous cavities in the MIPs, and quantified by HPLC after desorption with acetonitrile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  1. Kumar R, Ansari KM, Saxena N, Dwivedi PD, Jain SK, Das M (2012) Detection of ochratoxin A in wheat samples in different regions of India. Food Control 26:63–67. https://doi.org/10.1016/j.foodcont.2012.01.004

    Article  CAS  Google Scholar 

  2. Zhang YQ, Wang LT, Shen X, Wei XQ, Huang XN, Liu YJ et al (2017) Broad-specificity immunoassay for simultaneous detection of ochratoxins A, B, and C in millet and maize. J Agric Food Chem 65:4830–4838. https://doi.org/10.1021/acs.jafc.7b00770

    Article  CAS  PubMed  Google Scholar 

  3. Wu XM, Hu J, Zhu BH, Lu L, Huang XD, Pang DW (2011) Aptamer-targeted magnetic nanospheres as a solid-phase extraction sorbent for determination of ochratoxin A in food samples. J Chromatogr A 1218:7341–7346. https://doi.org/10.1016/j.chroma.2011.08.045

    Article  CAS  PubMed  Google Scholar 

  4. Xie L, Sheng P, Kong W, Zhao X, Ou-Yang Z, Yang M (2015) Solid-phase extraction using molecularly imprinted polymer for determination of ochratoxin A in human urine. World Mycotoxin J 8:37–44. https://doi.org/10.3920/WMJ2013.1633

    Article  Google Scholar 

  5. Mashhadizadeh MH, Amoli-Diva M, Pourghazi K (2013) Magnetic nanoparticles solid phase extraction for determination of ochratoxin a in cereals using high-performance liquid chromatography with fluorescence detection. J Chromatogr A 1320:17–26. https://doi.org/10.1016/j.chroma.2013.10.062

    Article  CAS  PubMed  Google Scholar 

  6. National Standard of People’s Republic of China (GB 2761-2017), Mycotoxins limited in food, National Health and Family Planning Commission of the People’s Repubic of China, Beijing, 2017. http://mall.foodmate.net/goods-85839.html

  7. Remiro R, González-Peñas E, Lizarraga E, de Cerain AL (2012) Quantification of ochratoxin A and five analogs in Navarra red wines. Food Control 27:139–145. https://doi.org/10.1016/j.foodcont.2012.03.006

    Article  CAS  Google Scholar 

  8. Remiro R, Ibáñez-Vea M, González-Peñas E, Lizarraga E (2010) Validation of a liquid chromatography method for the simultaneous quantification of ochratoxin A and its analogues in red wines. J Chromatogr A 1217:8249–8256. https://doi.org/10.1016/j.chroma.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  9. Savastano ML, Losito I, Pati S (2016) Rapid and automatable determination of ochratoxin A in wine based on microextraction by packed sorbent followed by HPLC-FLD. Food Control 68:391–398. https://doi.org/10.1016/j.foodcont.2016.04.016

    Article  CAS  Google Scholar 

  10. Rodríguez-Cabo T, Rodríguez I, Ramil M, Cela R (2016) Liquid chromatography quadrupole time-of-flight mass spectrometry selective determination of ochratoxin A in wine. Food Chem 199:401–408. https://doi.org/10.1016/j.foodchem.2015.12.036

    Article  CAS  PubMed  Google Scholar 

  11. Cao JL, Kong WJ, Zhou SJ, Yin LH, Wan L, Yang MH (2013) Molecularly imprinted polymer-based solid phase clean-up for analysis of ochratoxin A in beer, red wine, and grape juice. J Sep Sci 36:1291–1297. https://doi.org/10.1002/jssc.201201055

    Article  CAS  PubMed  Google Scholar 

  12. Maier NM, Buttinger G, Welhartizki S, Gavioli E, Lindner W (2004) Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations. J Chromatogr B 804:103–111. https://doi.org/10.1016/j.jchromb.2004.01.014

    Article  CAS  Google Scholar 

  13. Giovannoli C, Passini C, Nardo FD, Anfosso L, Baggiani C (2014) Determination of ochratoxin A in Italian red wines by molecularly imprinted solid phase extraction and HPLC analysis. J Agric Food Chem 62:5220–5225. https://doi.org/10.1021/jf5010995

    Article  CAS  PubMed  Google Scholar 

  14. Niu MH, Pham-Huy C, He H (2016) Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Microchim Acta 183:2677–2695. https://doi.org/10.1007/s00604-016-1930-4

    Article  CAS  Google Scholar 

  15. Li HF, Xie T, Ye LL, Wang YW, Xie CG (2017) Core-shell magnetic molecularly imprinted polymer nanoparticles for the extraction of triazophos residues from vegetables. Microchim Acta 184:1011–1019. https://doi.org/10.1007/s00604-017-2096-4

    Article  CAS  Google Scholar 

  16. Zhang WL, Li Y, Wang Q, Wang C, Wang PF, Mao K (2013) Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO2 nanotubes for the removal of estrogenic chemicals from secondary effluents. Environ Sci Pollut R 20:1431–1440. https://doi.org/10.1007/s11356-012-0983-0

    Article  CAS  Google Scholar 

  17. Shi XX, Xu L, Duan HQ, Huang YP, Liu ZS (2011) CEC separation of ofloxacin enantiomers using imprinted microparticles prepared in molecular crowding conditions. Electrophoresis 32:1348–1356. https://doi.org/10.1002/elps.201000515

    Article  CAS  PubMed  Google Scholar 

  18. Turan E, Sahin F (2016) Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors Actuators B 227:668–676. https://doi.org/10.1016/j.snb.2015.12.087

    Article  CAS  Google Scholar 

  19. Zare F, Ghaedi M, Daneshfar A, Ostovan A (2015) Magnetic molecularly imprinted polymer for the efficient and selective preconcentration of diazinon before its determination by high-performance liquid chromatography. J Sep Sci 38:2797–2803. https://doi.org/10.1002/jssc.201500383

    Article  CAS  PubMed  Google Scholar 

  20. Huang ZZ, Lee HK (2015) Study and comparison of polydopamine and its derived carbondecorated nanoparticles in the magnetic solid-phaseextraction of estrogens. J Chromatogr A 1414:41–50. https://doi.org/10.1016/j.chroma.2015.08.039

    Article  CAS  PubMed  Google Scholar 

  21. Yang B, Lv SF, Chen F, Liu C, Cai CQ, Chen CY et al (2016) A resonance light scattering sensor based on bioinspired molecularlyimprinted polymers for selective detection of papain at trace levels. Anal Chim Acta 912:125–132. https://doi.org/10.1016/j.aca.2016.01.030

    Article  CAS  PubMed  Google Scholar 

  22. Hu MH, Huang PC, Suo LL, Wu FY (2017) Cetylpyridinium chloride functionalized silica-coated magnetite microspheres for the solid-phase extraction and pre-concentration of ochratoxin A from environmental water samples with high-performance liquid chromatographic analysis. J Sep Sci 40:2431–2437. https://doi.org/10.1002/jssc.201601464

    Article  CAS  PubMed  Google Scholar 

  23. Yao GH, Liang RP, Huang CF, Wang Y, Qiu JD (2013) Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition. Anal Chem 85:11944–11951. https://doi.org/10.1021/ac402848x

    Article  CAS  PubMed  Google Scholar 

  24. National Standard of People’s Republic of China (GB 5009.96-2016), Determination of ochratoxin A in food, National Health and Family Planning Commission of the People’s Repubic of China, Beijing, 2016. http://mall.foodmate.net/goods-88895.html

  25. Chen J, Liang RP, Wang XN, Qiu JD (2015) A norepinephrine coated magnetic molecularly imprinted polymer for simultaneous multiple chiral recognition. J Chromatogr A 1409:268–276. https://doi.org/10.1016/j.chroma.2015.07.052

    Article  CAS  PubMed  Google Scholar 

  26. Yu P, Sun QL, Li JF, Tan ZJ, Yan YS, Li CX (2015) Magnetic imprinted nanomicrosphere attached to the surface of bacillus using miniemulsion polymerization for selective recognition of 2,4,6-trichlorophenol from aqueous solutions. J Ind Eng Chem 29:349–358. https://doi.org/10.1016/j.jiec.2015.04.014

    Article  CAS  Google Scholar 

  27. Dai SL, Wu SJ, Duan N, Wang ZP (2016) A luminescence resonance energy transfer based aptasensor for the mycotoxin Ochratoxin A using upconversion nanoparticles and gold nanorods. Microchim Acta 183:1909–1916. https://doi.org/10.1007/s00604-016-1820-9

    Article  CAS  Google Scholar 

  28. Qing Y, Li X, Chen S, Zhou XP, Luo M, Xu X, Li CR, Qiu JF (2017) Differential pulse voltammetric ochratoxin A assay based on the use of an aptamer and hybridization chain reaction. Microchim Acta 184:863–870. https://doi.org/10.1007/s00604-017-2080-z

    Article  CAS  Google Scholar 

  29. Zhang CC, Tang J, Huang LL, Li YP, Tang DP (2017) In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Microchim Acta 184:2445–2453. https://doi.org/10.1007/s00604-017-2223-2

    Article  CAS  Google Scholar 

  30. Wu H, Liu RJ, Kang XJ, Liang CY, Lv L, Guo ZJ (2018) Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185:27. https://doi.org/10.1007/s00604-017-52592-6

    Article  Google Scholar 

  31. Jia W, Chu XG, Ling Y, Huang JR, Chang J (2014) Multi-mycotoxin analysis in dairy products by liquid chromatographycoupled to quadrupole orbitrap mass spectrometry. J Chromatogr A 1345:107–114. https://doi.org/10.1016/j.chroma.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  32. Flores-Flores ME, González-Peñas E (2017) An LC–MS/MS method for multi-mycotoxin quantification in cow milk. Food Chem 218:378–385. https://doi.org/10.1016/j.foodchem.2016.09.101

    Article  CAS  PubMed  Google Scholar 

  33. Limay-Rios V, Miller JD, Schaafsma AW (2017) Occurrence of Penicillium verrucosum, ochratoxin A, ochratoxin B and citrinin in onfarm stored winter wheat from the Canadian Great Lakes region. PLoS One 12:e0181239. https://doi.org/10.1371/journal.pone.0181239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge the National Natural Science Foundation of China (No. 21765014 and 21505067) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangying Wu.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 763 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Huang, P., Suo, L. et al. Polydopamine-based molecularly imprinting polymers on magnetic nanoparticles for recognition and enrichment of ochratoxins prior to their determination by HPLC. Microchim Acta 185, 300 (2018). https://doi.org/10.1007/s00604-018-2826-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2826-2

Keywords

Navigation