Advertisement

Microchimica Acta

, 185:281 | Cite as

Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms

  • Yanying Wang
  • Yan Yang
  • Wei Liu
  • Fang Ding
  • Qingbiao Zhao
  • Ping Zou
  • Xianxiang Wang
  • Hanbing Rao
Original Paper

Abstract

A dual-read detection system is described for non-enzymatic and non-aggregation based analysis of uric acid (UA). Silver triangular nanoprisms (AgTNPs) were used as colorimetric probes, while the reduction in the fluorescence of nitrogen-doped carbon quantum dots (N-CQDs) served as the fluorometric readout. The absorption band of the AgTNPs overlaps the emission band of N-CQDs (with a peak at 440 nm). Therefore, fluorescence is reduced owing to an inner filter effect. The AgTNPs are etched if exposed to H2O2, and round nanodiscs are formed. In the presence of UA, etching of the AgTNPs is suppressed because the facets of the AgTNPs are coated with UA. The absorbance, best measured at 683 nm, increases with the concentration of the pre-added UA. The colorimetric assay works in the 0.1–45 μM UA concentration range, and the fluorometric assay between 1 and 42 μM of UA. The respective detection limits are 50 and 200 nM, respectively. The probe can be used for direct visualization of UA. The method was successfully applied to the determination of UA in urine samples.

Graphical abstract

The fluorescence of nitrogen-doped carbon quantum dots (N-CQDs) is quenched by AgTNPs (silver triangular nanoprisms). As the AgTNPs are etched by H2O2, fluorescence recovers in the system after H2O2 is added, and also undergoes a color change. Uric acid (UA) protects the AgTNPs from etching because the facets of the AgTNPs are coated with UA. The fluorescence of N-CQDs decreases. Thus, a dual-read probe is developed for determination of UA.

Keywords

Fluorescence Silver triangular nanoprisms Dual-read probe Inner filter effect Facet-dependent properties Morphological transition 

Notes

Acknowledgments

This work was supported by a grant from the Two-way Support Programs of Sichuan Agricultural University (Project No.03572228) and the Education Department of Sichuan Provincial, PR China (Grant No. 16ZA0039).

Compliance with ethical standards

The author(s) declare that they have no competing interest.

Supplementary material

604_2018_2814_MOESM1_ESM.doc (12.7 mb)
ESM 1 (DOC 13035 kb)

References

  1. 1.
    Álvarez-Lario B, Macarrón-Vicente J (2010) Uric acid and evolution. Rheumatology 49(11):2010–2015CrossRefPubMedGoogle Scholar
  2. 2.
    YC Luo, JS Do, CC Liu (2006) An amperometric uric acid biosensor based on modified Ir-C electrode. Biosens Bioelectron 22(4):482–488CrossRefPubMedGoogle Scholar
  3. 3.
    Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107(107C):312–323CrossRefPubMedGoogle Scholar
  4. 4.
    Dai X, Fang X, Zhang C, Xu R, Xu B (2007) Determination of serum uric acid using high-performance liquid chromatography (HPLC)/isotope dilution mass spectrometry (ID-MS) as a candidate reference method. J Chromotogr B 857(2):287–295CrossRefGoogle Scholar
  5. 5.
    Galbán J, Andreu Y, Almenara MJ, De MS, Castillo JR (2001) Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase. Talanta 54(5):847–854CrossRefPubMedGoogle Scholar
  6. 6.
    Ali SMU, Alvi NH, Ibupoto Z, Nur O, Willander M, Danielsson B (2011) Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires. Sensor Actuat B-Chem 152(2):241–247CrossRefGoogle Scholar
  7. 7.
    Chen X, Wu G, Cai Z, Oyama M, Chen X (2014) Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim Acta 181(7):689–705CrossRefGoogle Scholar
  8. 8.
    Jin D, Seo MH, Huy BT, Pham QT, Conte ML, Thangadurai D, Lee YI (2016) Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 77:359–365CrossRefPubMedGoogle Scholar
  9. 9.
    Wu D, Lu H-F, Xie H, Wu J, Wang C-M, Zhang Q-L (2015) Uricase-stimulated etching of silver nanoprisms for highly selective and sensitive colorimetric detection of uric acid in human serum. Sensor Actuat B-Chem 221:1433–1440CrossRefGoogle Scholar
  10. 10.
    Cantale V, Simeone FC, Gambari R, Rampi MA (2011) Gold nano-islands on FTO as plasmonic nanostructures for biosensors. Sensor Actuat B-Chem 152(2):206–213CrossRefGoogle Scholar
  11. 11.
    Rao H, Ge H, Wang X, Zhang Z, Liu X, Yang Y, Liu Y, Liu W, Zou P, Wang Y (2017) Colorimetric and fluorometric detection of protamine by using a dual-mode probe consisting of carbon quantum dots and gold nanoparticles. Microchim Acta 184(8):1–9CrossRefGoogle Scholar
  12. 12.
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interfac 145(1):83–96CrossRefGoogle Scholar
  13. 13.
    Sherry LJ, Jin R, Mirkin CA, And GCS, Duyne RPV (2006) Localized surface plasmon resonance spectroscopy of single silver triangular Nanoprisms. Nano Lett 6(9):2060–2065CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang YL, Wang L, Zhang HC, Liu Y, Wang HY, Kang ZH, Lee ST (2013) Graphitic carbon quantum dots as a fluorescent sensing platform for highly efficient detection of Fe3+ ions. RSC Adv 3(11):3733–3738CrossRefGoogle Scholar
  15. 15.
    Dai H, Shi Y, Wang Y, Sun Y, Hu J, Ni P, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensor Actuat B-Chem 202(19):201–208CrossRefGoogle Scholar
  16. 16.
    Zhao D, Chen C, Sun J, Yang X (2016) Carbon dots-assisted colorimetric and fluorometric dual-mode protocol for acetylcholinesterase activity and inhibitors screening based on the inner filter effect of silver nanoparticles. Analyst 141(11):3280–3288CrossRefPubMedGoogle Scholar
  17. 17.
    Gao X, Du C, Zhuang Z, Chen W (2016) Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 4(29):6927–6945CrossRefGoogle Scholar
  18. 18.
    Zhu S, Meng Q, Wang L, Zhang J, Song Y, Jin H, Zhang K, Sun H, Wang H, Yang B (2013) Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew Chem 52(14):3953–3957CrossRefGoogle Scholar
  19. 19.
    Fan Y, Cheng H, Zhou C, Xie X, Liu Y, Dai L, Zhang J, Qu L (2012) Honeycomb architecture of carbon quantum dots: a new efficient substrate to support gold for stronger SERS. Nano 4(5):1776–1781Google Scholar
  20. 20.
    Wang Z, Fan Z (2018) Cu2+ modulated nitrogen-doped grapheme quantum dots as a turn-off/on fluorescence sensor for the selective detection of histidine in biological fluid. Spectrochim Acta A 189:195–201CrossRefGoogle Scholar
  21. 21.
    Liu Z, Gong Y, Fan Z (2016) Cysteine detection using a high-fluorescence sensor based on a nitrogen-doped graphene quantum dot–mercury(II) system. J Lumin 175:129–134CrossRefGoogle Scholar
  22. 22.
    Sun Y, Brian Mayers A, Xia Y (2003) Transformation of silver nanospheres into nanobelts and triangular Nanoplates through a thermal process. Nano Lett 3(5):675–679CrossRefGoogle Scholar
  23. 23.
    Corro G, Vidal E, Cebada S, Pal U, Bañuelos F, Vargas D, Guilleminot E (2017) Electronic state of silver in Ag/SiO2 and Ag/ZnO catalysts and its effect on diesel particulate matter oxidation: an XPS study. Appl Catal B Environ 216:1–10CrossRefGoogle Scholar
  24. 24.
    Yu X, Liu J, Yu Y, Zuo S, Li B (2014) Preparation and visible light photocatalytic activity of carbon quantum dots/TiO 2 nanosheet composites. Carbon 68(3):718–724CrossRefGoogle Scholar
  25. 25.
    Xiao Z, Loughlin F, George GN, Howlett GJ, Wedd AG (2004) C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J Am Chem Soc 126(10):3081–3090CrossRefPubMedGoogle Scholar
  26. 26.
    Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77(22):7294–7303CrossRefPubMedGoogle Scholar
  27. 27.
    Fang A, Wu Q, Lu Q, Chen H, Li H, Liu M, Zhang Y, Yao S (2016) Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid. Biosens Bioelectron 86:664–670CrossRefPubMedGoogle Scholar
  28. 28.
    Millstone JE, Hurst SJ, Métraux GS, Cutler JI, Mirkin CA (2009) Colloidal gold and silver triangular nanoprisms. Small 5(6):646–664CrossRefPubMedGoogle Scholar
  29. 29.
    Tan K, Yang G, Chen H, Shen P, Huang Y, Xia Y (2014) Facet dependent binding and etching: ultra-sensitive colorimetric visualization of blood uric acid by unmodified silver nanoprisms. Biosens Bioelectron 59(13):227–232CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao Y, Yan X, Kang Z, Lin P, Fang X, Lei Y, Ma S, Zhang Y (2013) Highly sensitive uric acid biosensor based on individual zinc oxide micro/nanowires. Microchim Acta 180(9-10):759–766CrossRefGoogle Scholar
  31. 31.
    Wang H, Lu Q, Hou Y, Liu Y, Zhang Y (2016) High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 155:62–69CrossRefPubMedGoogle Scholar
  32. 32.
    Zhou Y, Ling B, Chen H, Wang L (2018) Mn2+ -doped NaYF4:Yb,Er upconversion nanoparticles for detection of uric acid based on the Fenton reaction. Talanta 180:120–126CrossRefPubMedGoogle Scholar
  33. 33.
    Kong R-M, Yang A, Wang Q, Wang Y, Ma L, Qu F (2017) Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim Acta 185(1):63CrossRefGoogle Scholar
  34. 34.
    da Cruz FS, Paula F d S, Franco DL, dos Santos WTP, Ferreira LF (2017) Electrochemical detection of uric acid using graphite screen-printed electrodes modified with Prussian blue/poly(4-aminosalicylic acid)/Uricase. J Electroanal Chem 806:172–179CrossRefGoogle Scholar
  35. 35.
    Wang Y (2011) The electrochemistry of uric acid at a gold electrode modified with L-cysteine, and its application to sensing uric urine. Microchim Acta 172(3):419–424CrossRefGoogle Scholar
  36. 36.
    Yang Y, Jo A, Lee Y, Lee C (2018) Electrodeposited nanoporous ruthenium oxide for simultaneous quantification of ascorbic acid and uric acid using chronoamperometry at two different potentials. Sensor Actuat B-Chem 255:316–324CrossRefGoogle Scholar
  37. 37.
    Rana L, Gupta R, Tomar M, Gupta V (2018) Highly sensitive Love wave acoustic biosensor for uric acid. Sensor Actuat B-Chem 261:169–177CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yanying Wang
    • 1
  • Yan Yang
    • 1
  • Wei Liu
    • 1
  • Fang Ding
    • 2
    • 3
  • Qingbiao Zhao
    • 4
  • Ping Zou
    • 1
  • Xianxiang Wang
    • 1
  • Hanbing Rao
    • 1
  1. 1.College of ScienceSichuan Agricultural UniversityYucheng DistrictPeople’s Republic of China
  2. 2.Suzhou Institute of Systems MedicineSuzhouPeople’s Republic of China
  3. 3.Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingPeople’s Republic of China
  4. 4.Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic EngineeringEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations