Advertisement

Microchimica Acta

, 185:287 | Cite as

MoS2 nanosheets with peroxidase mimicking activity as viable dual-mode optical probes for determination and imaging of intracellular hydrogen peroxide

  • Huimei Liu
  • Baocheng Wang
  • Dehai Li
  • Xueyi Zeng
  • Xiao Tang
  • Qingsheng Gao
  • Jiye Cai
  • Huai-hong Cai
Original Paper
  • 122 Downloads

Abstract

The authors describe a dual-mode (colorimetric-fluorometric) nanoprobe for H2O2 that was fabricated by covering molybdenum disulfide nanosheets (MoS2 NS) with ortho-phenylenediamine (OPD). The probe (OPD-MoS2 NS) was applied to the optical determination of H2O2, to the quantitation of cell numbers, and to the detection of intracellular concentrations of H2O2. Oxidation by H2O2 leads to a colored and fluorescent product (oxidized OPD) with absorption/excitation/fluorescence peaks at 450/450/557 nm. The nanoprobe can detect H2O2 in down to 500 nM concentrations, and HeLa cells at levels of 100 cells mL−1. The detection limit for intracellular H2O2 is in the 5.5 to 12.6 μM concentration range when the method is applied to cells at levels of 102–106 cells mL−1. Due to its good biocompatibility and easy cell uptake, the nanoprobe also permits sensitive fluorometric imaging of intracellular H2O2. It can also comparatively discriminate the change of intracellular oxidation state in living cancerous and normal cells.

Graphical abstract Editor, we provided image with high resolution. Please find it in a folder name "MIAC-D-18-00081" in the FTP site.

A dual-mode (colorimetric-fluorometric) detection nanoplatform based on OPD-modified MoS2 nanosheets is used to quantitatively detect H2O2, cell numbers and intracellular H2O2. The MoS2 nanoprobes also permit sensitive fluorescence imaging of intracellular H2O2, and can discriminate intracellular oxide states in living cancerous and normal cells.

Keywords

Molybdenum disulfide nanosheet Ortho-phenylenediamine Signal amplification Colorimetric detection Fluorometric detection Intracellular oxide state Cell imaging 

Notes

Acknowledgments

This work is financially supported by Fundamental Research Funds for the Central Universities (Grant No. 21610427 and 21612402) and Natural Science Foundation of Guangdong Province (Grant No. S2012040006713). J.Y. Cai thanks the support from Macao Science and Technology Development Fund (Grant No. 028/2014/A1). Q. Gao thanks the support from the National Natural Science Foundation of China (Grant No. 21773093).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2792_MOESM1_ESM.docx (150 kb)
ESM 1 (DOCX 149 KB)

References

  1. 1.
    Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194(1):7–15CrossRefGoogle Scholar
  2. 2.
    Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA (2012) Reactive oxygen species (ROS) - a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cells Mater 24:249–265CrossRefGoogle Scholar
  3. 3.
    Cui WW, Qin HY, Zhou Y, Du JX (2017) Determination of the activity of hydrogen peroxide scavenging by using blue-emitting glucose oxidase-stabilized gold nanoclusters as fluorescent nanoprobes and a Fenton reaction that induces fluorescence quenching. Microchim Acta 184(4):1103–1108CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I, Liu ZG (2013) ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res 23(7):898–914CrossRefGoogle Scholar
  5. 5.
    Shutt T, Geoffrion M, Milne R, McBride HM (2012) The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep 13(10):909–915CrossRefGoogle Scholar
  6. 6.
    Muriach M, Flores-Bellver M, Romero FJ, Barcia JM (2014) Diabetes and the brain: oxidative stress, inflammation, and autophagy. Oxidative Med Cell Longev 2014:102158CrossRefGoogle Scholar
  7. 7.
    Jorgenson TC, Zhong WX, Oberley TD (2013) Redox imbalance and biochemical changes in cancer. Cancer Res 73(20):6118–6123CrossRefGoogle Scholar
  8. 8.
    Genova ML, Lenaz G (2015) The interplay between respiratory supercomplexes and ROS in aging. Antioxid Redox Sign 23(3):208–238CrossRefGoogle Scholar
  9. 9.
    Schaferling M, Grogel DBM, Schreml S (2011) Luminescent probes for detection and imaging of hydrogen peroxide. Microchim Acta 174(1–2):1–18CrossRefGoogle Scholar
  10. 10.
    Xiao SJ, Zhao XJ, Hu PP, Chu ZJ, Huang CZ, Zhang L (2016) Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2,4,6-trinitrotoluene determination. Acs Appl Mater Inter 8(12):8184–8191CrossRefGoogle Scholar
  11. 11.
    Guo XR, Wang Y, Wu FY, Ni YN, Kokot S (2015) A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 140(4):1119–1126CrossRefGoogle Scholar
  12. 12.
    Zhao K, Gu W, Zheng SS, Zhang CL, Xian YZ (2015) SDS-MoS2 nanoparticles as highly-efficient peroxidase mimetics for colorimetric detection of H2O2 and glucose. Talanta 141:47–52CrossRefGoogle Scholar
  13. 13.
    Wang TY, Zhu HC, Zhuo JQ, Zhu ZW, Papakonstantinou P, Lubarsky G, Lin J, Li MX (2013) Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal Chem 85(21):10289–10295CrossRefGoogle Scholar
  14. 14.
    Guo J, Wang Y, Zhao M (2018) 3D flower-like ferrous(II) phosphate nanostructures as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose at nanomolar level. Talanta 182:230–240CrossRefGoogle Scholar
  15. 15.
    Yang HC, Li FM, Zou CZ, Huang QT, Chen DJ (2017) Sulfur-doped carbon quantum dots and derived 3D carbon nanoflowers are effective visible to near infrared fluorescent probes for hydrogen peroxide. Microchim Acta 184(7):2055–2062CrossRefGoogle Scholar
  16. 16.
    Yang Y, Liu T, Cheng L, Song GS, Liu Z, Chen MW (2015) MoS2-based nanoprobes for detection of silver ions in aqueous solutions and bacteria. Acs Appl Mater Inter 7(14):7526–7533CrossRefGoogle Scholar
  17. 17.
    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805CrossRefGoogle Scholar
  18. 18.
    Mao K, Wu ZT, Chen YR, Zhou XD, Shen AG, Hu JM (2015) A novel biosensor based on single-layer MoS2 nanosheets for detection of Ag+. Talanta 132:658–663CrossRefGoogle Scholar
  19. 19.
    Kong RM, Ding L, Wang ZJ, You JM, Qu FL (2015) A novel aptamer-functionalized MoS2 nanosheet fluorescent biosensor for sensitive detection of prostate specific antigen. Anal Bioanal Chem 407(2):369–377CrossRefGoogle Scholar
  20. 20.
    Zhu CF, Zeng ZY, Li H, Li F, Fan CH, Zhang H (2013) Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J Am Chem Soc 135(16):5998–6001CrossRefGoogle Scholar
  21. 21.
    Huang YX, Shi YM, Yang HY, Ai Y (2015) A novel single-layered MoS2 nanosheet based microfluidic biosensor for ultrasensitive detection of DNA. Nanoscale 7(6):2245–2249CrossRefGoogle Scholar
  22. 22.
    Hu J, Zhuang QF, Wang Y, Ni YN (2016) Label-free fluorescent catalytic biosensor for highly sensitive and selective detection of the ferrous ion in water samples using a layered molybdenum disulfide nanozyme coupled with an advanced chemometric model. Analyst 141(5):1822–1829CrossRefGoogle Scholar
  23. 23.
    Wang Y, Hu J, Zhuang QF, Ni YN (2016) Enhancing sensitivity and selectivity in a label-free colorimetric sensor for detection of iron(II) ions with luminescent molybdenum disulfide nanosheet-based peroxidase mimetics. Biosens Bioelectron 80:111–117CrossRefGoogle Scholar
  24. 24.
    Lin Z, Xiao Y, Yin YQ, Hu WL, Liu W, Yang HH (2014) Facile synthesis of enzyme-inorganic hybrid nanoflowers and its application as a colorimetric platform for visual detection of hydrogen peroxide and phenol. Acs Appl Mater Inter 6(13):10775–10782CrossRefGoogle Scholar
  25. 25.
    Guan JF, Peng J, Jin XY (2015) Synthesis of copper sulfide nanorods as peroxidase mimics for the colorimetric detection of hydrogen peroxide. Anal Methods-Uk 7(13):5454–5461CrossRefGoogle Scholar
  26. 26.
    Zhao C, Jiang ZW, Mu RZ, Li YF (2016) A novel sensor for dopamine based on the turn-on fluorescence of Fe-MIL-88 metal-organic frameworks-hydrogen peroxide-o-phenylenediamine system. Talanta 159:365–370CrossRefGoogle Scholar
  27. 27.
    Singh S, Tripathi P, Kumar N, Nara S (2017) Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens Bioelectron 92:280–286CrossRefGoogle Scholar
  28. 28.
    Liu N, Guo YL, Yang XY, Lin HL, Yang LC, Shi ZP, Zhong ZW, Wang SN, Tang Y, Gao QS (2015) Microwave-assisted reactant-protecting strategy toward efficient MoS2 electrocatalysts in hydrogen evolution reaction. Acs Appl Mater Inter 7(42):23741–23749CrossRefGoogle Scholar
  29. 29.
    Guo YL, Shu YJ, Li AQ, Li BL, Pi J, Cai JY, Cai HH, Gao QS (2017) Efficient electrochemical detection of cancer cells on in situ surface-functionalized MoS2 nanosheets. J Mater Chem B 5(28):5532–5538CrossRefGoogle Scholar
  30. 30.
    Cai HH, Pi J, Lin XY, Li BL, Li AQ, Yang PH, Cai JY (2015) Gold nanoprobes-based resonance Rayleigh scattering assay platform: sensitive cytosensing of breast cancer cells and facile monitoring of folate receptor expression. Biosens Bioelectron 74:165–169CrossRefGoogle Scholar
  31. 31.
    Kumar S, Rhim WK, Lim DK, Nam JM (2013) Glutathione dimerization-based plasmonic nanoswitch for biodetection of reactive oxygen and nitrogen species. ACS Nano 7(3):2221–2230CrossRefGoogle Scholar
  32. 32.
    Zhang K, Mao LY, Cai RX (2000) Stopped-flow spectrophotometric determination of hydrogen peroxide with hemoglobin as catalyst. Talanta 51(1):179–186CrossRefGoogle Scholar
  33. 33.
    Li R, Lei CH, Zhao XE, Gao Y, Gao H, Zhu SY, Wang H (2018) A label-free fluorimetric detection of biothiols based on the oxidase-like activity of Ag+ ions. Spectrochim Acta A 188:20–25CrossRefGoogle Scholar
  34. 34.
    Li N, Than A, Sun CC, Tian JQ, Chen J, Pu KY, Dong XC, Chen P (2016) Monitoring dynamic cellular redox homeostasis using fluorescence-switchable graphene quantum dots. ACS Nano 10(12):11475–11482CrossRefGoogle Scholar
  35. 35.
    Wang Z, Li XH, Feng D, Li LH, Shi W, Ma HM (2014) Poly(m-phenylenediamine)-based fluorescent nanoprobe for ultrasensitive detection of matrix metalloproteinase 2. Anal Chem 86(15):7719–7725CrossRefGoogle Scholar
  36. 36.
    Treberg JR, Munro D, Banh S, Zacharias P, Sotiri E (2015) Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration. Redox Biol 5:216–224CrossRefGoogle Scholar
  37. 37.
    Wang TY, Peng Z, Wang YH, Tang J, Zheng GF (2013) MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithium-ion battery, supercapacitor and sensor. Sci Rep-Uk 3:2693CrossRefGoogle Scholar
  38. 38.
    Li AQ, Liu HM, Ouyang P, Yang PH, Cai HH, Cai JY (2017) A sensitive probe for detecting intracellular reactive oxygen species via glutathione-mediated nanoaggregates to enhance resonance Rayleigh scattering signals. Sensor Actuat B-Chem 246:190–196CrossRefGoogle Scholar
  39. 39.
    Ding LH, Gong ZJ, Yan M, Yu JH, Song XR (2017) Determination of glucose by using fluorescent silicon nanoparticles and an inner filter caused by peroxidase-induced oxidation of o-phenylenediamine by hydrogen peroxide. Microchim Acta 184(11):4531–4536CrossRefGoogle Scholar
  40. 40.
    Dai HC, Ni PJ, Sun YJ, Hu JT, Jiang S, Wang YL, Li Z (2015) Label-free fluorescence detection of mercury ions based on the regulation of the Ag autocatalytic reaction. Analyst 140(10):3616–3622CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Huimei Liu
    • 1
  • Baocheng Wang
    • 2
  • Dehai Li
    • 3
  • Xueyi Zeng
    • 1
  • Xiao Tang
    • 1
  • Qingsheng Gao
  • Jiye Cai
    • 1
    • 4
  • Huai-hong Cai
    • 1
  1. 1.Department of Chemistry, College of Chemistry and Materials ScienceJinan UniversityGuangzhouChina
  2. 2.The First Affiliated Hospital, Biomedical Translational Research Instituteand, Biomedical Translational Research Institute, Guangdong Province Key Laboratory of Molecular Immunology and Antibody EngineeringJinan UniversityGuangzhouChina
  3. 3.College of Life Science and TechnologyJinan UniversityGuangzhouChina
  4. 4.State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyMacauChina

Personalised recommendations