Microchimica Acta

, 185:238 | Cite as

Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone

  • Shi-jie Li
  • Wei Sheng
  • Wenjun Wen
  • Ying Gu
  • Jun-ping Wang
  • Shuo Wang
Original Paper


Colloidal gold, quantum dots and polystyrene microspheres were used as labels in three kinds of lateral flow immunochromatographic assays (ICAs) for the detection of zearalenone (ZEN) in cereal samples. The assays allow ZEN to be quantified within 20 min. The LODs are 10 μg·L−1 of ZEN for the colloidal gold-based ICA, and 1 μg·L−1 for both the quantum dot and polystyrene microsphere based ICAs. The respective data are 60 μg·kg−1, 6 μg·kg−1 and 6 μg·kg−1, respectively, for spiked samples and cereals. Only minor cross-sensitivity occurred between ZEN and fusarium toxins, and no cross-sensitivity if found for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. LODs of the three assays are lower than the maximum limits of ZEN set by most standardization agencies.

Graphical abstract

Schematic presentation of three lateral flow immunochromatographic assays (ICAs) based on the use of (a) colloidal gold (CG), (b) fluorescent quantum dots (QD), and (c) polystyrene microspheres (PMs) as signalling labels for the rapid and sensitive determination of zearalenone (ZEN) in cereal samples.


Colloidal gold Quantum dots Polystyrene microspheres Immunochromatographic assay Cereal samples 



The authors are grateful for providing language help from the American Journal Experts.


This work was supported “The National Key R&D Program of China” (No. 2016YFD0401202), Special Project of Tianjin Innovation Platform (No.17PTGCCX00230).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2778_MOESM1_ESM.doc (28.3 mb)
ESM 1 (DOC 28960 kb)


  1. 1.
    Richard JL (2007) Some major mycotoxins and their mycotoxicoses--an overview. Int J Food Microbiol 119:3–10CrossRefGoogle Scholar
  2. 2.
    Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food Chem Toxicol 45:1–18CrossRefGoogle Scholar
  3. 3.
    Kabak B (2009) The fate of mycotoxins during thermal food processing. J Sci Food Agric 89:549–554CrossRefGoogle Scholar
  4. 4.
    Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic cheM-ICAls and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252–4263CrossRefGoogle Scholar
  5. 5.
    FAO Agric (2003) In worldwide regulations for mycotoxins in food and feed in 2003. FAO Food and Nutration Paper, 81Google Scholar
  6. 6.
    CEC (2006) Setting maximum levels for certain contaminants in foodstuffs. Off J Eur Communities: Legis 364:5–24Google Scholar
  7. 7.
    Creppy EE (2002) Update of survey, regulation and toxic effects of mycotoxins in Europe. Toxicol Lett 127:19–28CrossRefGoogle Scholar
  8. 8.
    Binder EM, Tan LM, Chin LJ, Handl J, Richard J (2007) Worldwide occurrence of mycotoxins in commodities, feeds and feed ingredients. Anim Feed Sci Technol 137:265–282CrossRefGoogle Scholar
  9. 9.
    Kwaśniewska K, Gadzała-Kopciuch R, Cendrowski K (2015) Analytical procedure for the determination of zearalenone in environmental and bioloG-ICAl samples. Crit Rev Anal Chem 45:119–130CrossRefGoogle Scholar
  10. 10.
    Kinani S, Bouchonnet S, Bourcier S, Porcher JM, Aït-Aïssa S (2008) Study of the cheM-ICAl derivatization of zearalenone and its metabolites for gas chromatography-mass spectrometry analysis of environmental samples. J Chromatogr A 1190:307–315CrossRefGoogle Scholar
  11. 11.
    Echarte JM, Fernández DC, Chiacchio CA, Leedham VMT (2014) Comparison of a validated LC/MS/MS method with a validated GC/MS method for the analysis of Zeranol and its related mycotoxin residues in bovine urine samples collected during Argentina's residue monitoring control program (2005-2012). J AOAC Int 97:1470–1475CrossRefGoogle Scholar
  12. 12.
    Qian M, Zhang H, Wu L, Jin N, Wang J, Jiang K (2015) Simultaneous determination of zearalenone and its derivatives in edible vegetable oil by gel permeation chromatography and gas chromatography-triple quadrupole mass spectrometry. Food Chem 166:23–28CrossRefGoogle Scholar
  13. 13.
    Duca RC, Bravin F, Delaforge M, Vladescu L, Badea IA, Criste RD (2009) Development of a new HPLC method used for determination of zearalenone and its metabolites in broiler samples. Influence of zearalenone on the nutritional properties of broiler meat. J Agric Food Chem 57:10497–10504CrossRefGoogle Scholar
  14. 14.
    Zöllner P, Berner D, Jodlbauer J, Lindner W (2000) Determination of zearalenone and its metabolites α- and β-zearalenol in beer samples by high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr B Biomed Sci Appl 738:233–241CrossRefGoogle Scholar
  15. 15.
    Vendl O, Berthiller F, Crews C, Krska R (2009) Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS. Anal Bioanal Chem 395:1347–1354CrossRefGoogle Scholar
  16. 16.
    Hossain MZ, Maragos CM (2018) Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of fusarium mycotoxins in wheat. Biosens Bioelectron 101:245–252CrossRefGoogle Scholar
  17. 17.
    Feng R, Zhang Y, Ma H, Wu D, Fan H, Wang H, Li H, Du B, Wei Q (2013) Electrochim. Ultrasensitive non-enzymatic and non-mediator electrochemical biosensor using nitrogen-doped graphene sheets for signal amplification and nanoporous alloy as carrier. Electrochim Acta 97:105–111CrossRefGoogle Scholar
  18. 18.
    Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A (2016) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184(1):147–153CrossRefGoogle Scholar
  19. 19.
    Xu W, Qing Y, Chen S, Chen J, Qin Z, Qiu J, Li C (2017) Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Microchim Acta 184(9):3339–3347CrossRefGoogle Scholar
  20. 20.
    Hendrickson OD, Chertovich JO, Zherdev AV, Sveshnikov PG, Dzantiev BB (2018) Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control 84:330–338CrossRefGoogle Scholar
  21. 21.
    Chen Y, Fu Q, Li D, Xie J, Ke D, Song Q, Tang Y, Wang H (2017) A smartphone colorimetric reader integrated with an ambient light sensor and a 3D printed attachment for on-site detection of zearalenone. Anal Bioanal Chem 409(28):6567–6574CrossRefGoogle Scholar
  22. 22.
    Lv Y, Wu R, Feng K, Li J, Mao Q, Yuan H, Shen H, Chai X, Li LS (2017) Highly sensitive and accurate detection of C-reactive protein by CdSe/ZnS quantum dot-based fluorescence-linked immunosorbent assay. J Nanobiotechnol 15(1):35CrossRefGoogle Scholar
  23. 23.
    Sun Y, Xing G, Yang J, Wang F, Deng R, Zhang G, Hu X, Zhang Y (2016) Development of an immunochromatographic test strip for simultaneous qualitative and quantitative detection of ochratoxin a and zearalenone in cereal. J Sci Food Agric 96(11):3673–3678CrossRefGoogle Scholar
  24. 24.
    Jiang X, Li X, Yang Z, Eremin SA, Zhang X (2016) Evaluation and optimization of three different immunoassays for rapid detection Zearalenone in fodders. Food Anal Methods 10(1):256–262CrossRefGoogle Scholar
  25. 25.
    Fu X, Chu Y, Zhao K, Li J, Deng A (2017) Ultrasensitive detection of the β-adrenergic agonist brombuterol by a SERS-based lateral flow immunochromatographic assay using flower-like gold-silver core-shell nanoparticles. Microchim Acta 184(6):1711–1719. CrossRefGoogle Scholar
  26. 26.
    Wiriyachaiporn N, Sirikett H, Maneeprakorn W, Dharakul T (2017) Carbon nanotag based visual detection of influenza a virus by a lateral flow immunoassay. Microchim Acta 184(6):1827–1835. CrossRefGoogle Scholar
  27. 27.
    Zhang X, Yu X, Wen K, Li C, Mujtaba Mari G, Jiang H, Shi W, Shen J, Wang Z (2017) Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting three fusarium mycotoxins in maize. J Agric Food Chem 65(36):8063–8071CrossRefGoogle Scholar
  28. 28.
    Tang X, Li P, Zhang Q, Zhang Z, Zhang W, Jiang J (2017) Time-resolved fluorescence Immunochromatographic assay developed using two Idiotypic Nanobodies for rapid, quantitative, and simultaneous detection of aflatoxin and Zearalenone in maize and its products. Anal Chem 89(21):11520–11528CrossRefGoogle Scholar
  29. 29.
    Thouvenot D, Morfin RF (1983) Radioimmunoassay for Zearalenone and Zearalanol in human serum: production, properties and use of porcine antibodies. Appl Environ Microbiol 45:16–23Google Scholar
  30. 30.
    Yang Y, Ozsoz M, Liu G (2017) Gold nanocage-based lateral flow immunoassay for immunoglobulin G. Microchim Acta 184(7):2023–2029. CrossRefGoogle Scholar
  31. 31.
    Qin Z, Chan WCW, Boulware DR, Akkin T, Butler EK, Bischof JC (2012) Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast. Angew Chem Int Ed 51(18):4358–4361. CrossRefGoogle Scholar
  32. 32.
    He Q, Peng H, Yang J, Xu Z, Fan C, Sun Y (2017) QuEChERS extraction followed by enzyme-linked immunosorbent assay for determination of deoxynivalenol and zearalenone in cereals. Food Agric Immunol:1–19.
  33. 33.
    Petrakova AV, Urusov AE, Zherdev AV, Liu L, Xu C, Dzantiev BB (2017) Application of magnetite nanoparticles for the development of highly sensitive immunochromatographic test systems for mycotoxin detection. Appl Biochem Microbiol 53(4):470–475CrossRefGoogle Scholar
  34. 34.
    Beloglazova NV, Sobolev AM, Tessier MD, Hens Z, Goryacheva IY, De Saeger S (2017) Fluorescently labelled multiplex lateral flow immunoassay based on cadmium-free quantum dots. Methods 116:141–148CrossRefGoogle Scholar
  35. 35.
    Chen Y, Chen Q, Han M, Zhou J, Gong L, Niu Y, Zhang Y, He L, Zhang L (2016) Development and optimization of a multiplex lateral flow immunoassay for the simultaneous determination of three mycotoxins in corn, rice and peanut. Food Chem 213:478–484. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Food Engineering and Biotechnology Tianjin University of Science and Technology, Tianjin Engineering Centre of Food Safety Control and TechnologyTianjinChina
  2. 2.Medical College Nankai UniversityTianjinChina

Personalised recommendations