Microchimica Acta

, 185:243 | Cite as

A multifunctional probe based on the use of labeled aptamer and magnetic nanoparticles for fluorometric determination of adenosine 5’-triphosphate

  • Xiaojie Liu
  • Bixia Lin
  • Ying Yu
  • Yujuan Cao
  • Manli Guo
Original Paper
  • 100 Downloads

Abstract

A multifunctional fluorescent probe is synthesized for the determination of adenosine 5′-triphosphate (ATP). The 6-carboxyfluorescein-labeled aptamer (FAM-aptamer) was bound to the surface of magnetite nanoparticles coated with polydopamine (Fe3O4@PDA) by π-π stacking interaction to form the multifunctional probe. The probe has three functions including recognition, magnetic separation, and yielding a fluorescent signal. In the presence of ATP, FAM-aptamer on the surface of the probe binds to ATP and returns to the solution. Thus, the fluorescence of the supernatant is enhanced and can be related to the concentration of ATP. Fluorescence intensities were measured at excitation/emission wavelengths of 494/526 nm. Response is linear in the 0.1–100 μM ATP concentration range, and the detection limit is 89 nM. The probe was applied to the quantitation of ATP in spiked human urine and serum samples, with recoveries ranging between 94.8 and 102%.

Graphical abstract

A multifunctional fluorescent probe based on the use of FAM-aptamer and Fe3O4@PDA is described for the determination of ATP in spiked human urine and serum samples. FAM-aptamer: 6-carboxyfluorescein-labeled aptamer; Fe3O4@PDA: magnetite nanoparticles coated with polydopamine. ATP: adenosine 5′-triphosphate.

Keywords

Probe construction Polydopamine π Stacking interaction Magnetic separation Fluorescence Fluorescent probe Human urine Human serum 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21575043, 21275056, 21605052, 51478196); and the Platform Construction Project of Guangzhou Science Technology and Innovation Commission (No. 15180001).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2774_MOESM1_ESM.docx (142 kb)
ESM 1 (DOCX 141 kb)

References

  1. 1.
    Ma N, Jiang WT, Li T, Zhang ZQ, Qi HZ, Yang MH (2015) Fluorescence aggregation assay for the protein biomarker mucin 1 using carbon dot-labeled antibodies and aptamers. Microchim Acta 182:443–447.  https://doi.org/10.1007/s00604-014-1386-3 CrossRefGoogle Scholar
  2. 2.
    Wu H, Liu RJ, Kang XJ, Liang CY, Lv L, Guo ZJ (2018) Fluorometric aptamer assay for ochratoxin a based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microchim Acta 185:27.  https://doi.org/10.1007/s00604-017-2592-6 CrossRefGoogle Scholar
  3. 3.
    Rasheed T, Bilal M, Nabeel F, Iqbal HMN, Li CL, Zhou YF (2018) Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Sci Total Environ 615:476–485.  https://doi.org/10.1016/j.scitotenv.2017.09.126 CrossRefGoogle Scholar
  4. 4.
    Liu ZP, Li GD, Xia TT, Su XG (2015) Ultrasensitive fluorescent nanosensor for arsenate assay and removal using oligonucleotide-functionalized CuInS2 quantum dot@magnetic Fe3O4 nanoparticles composite. Sens Actuators B Chem 220:1205–1211.  https://doi.org/10.1016/j.snb.2015.06.111 CrossRefGoogle Scholar
  5. 5.
    Zheng P, Wu NQ (2017) Fluorescence and sensing applications of graphene oxide and graphene quantum dots: a review. Chem Asian J 12:2343–2353.  https://doi.org/10.1002/asia.201700814 CrossRefGoogle Scholar
  6. 6.
    Ma H, Liu XY, Wang XD, Li XR, Yang CD, Iqbal A, Liu WS, Li JP, Qin WW (2017) Sensitive fluorescent light-up probe for enzymatic determination of glucose using carbon dots modified with MnO2 nanosheets. Microchim Acta 184:177–185.  https://doi.org/10.1007/s00604-016-2004-3 CrossRefGoogle Scholar
  7. 7.
    Na WD, Liu XT, Pang S, Su XG (2015) Highly sensitive detection of 2,4,6-trinitrophenol (TNP) based on lysozyme capped CdS quantum dots. RSC Adv 5:51428–51434.  https://doi.org/10.1039/C5RA06101F CrossRefGoogle Scholar
  8. 8.
    Zhang HJ, Chen YL, Liang MJ, Xu LF, Qi SD, Chen HL, Chen XG (2014) Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Anal Chem 86:9846–9852.  https://doi.org/10.1021/ac502446m CrossRefGoogle Scholar
  9. 9.
    Sun YQ, Wang XJ, Wang C, Tong DY, Wang Q, Jiang KL, Jiang YN, Wang CX, Yang MH (2018) Red emitting and highly stable carbon dots with dual response to pH values and ferric ions. Microchim Acta 185:83.  https://doi.org/10.1007/s00604-017-2544-1 CrossRefGoogle Scholar
  10. 10.
    Yang ZJ, Liu H, Zong C, Yan F, Ju HX (2009) Automated support-resolution strategy for a one-way chemiluminescent multiplex immunoassay. Anal Chem 81:5484–5489.  https://doi.org/10.1021/ac900724m CrossRefGoogle Scholar
  11. 11.
    Lin ZH, Fei XF, Ma Q, Gao X, Su XG (2014) CuInS2 quantum dots@silica near-infrared fluorescent nanoprobe for cell imaging. New J Chem 38:90–96.  https://doi.org/10.1039/C3NJ00957B CrossRefGoogle Scholar
  12. 12.
    Liu JH, Wang CY, Jiang Y, Hu YP, Li JS, Yang S, Li YH, Yang RG, Tan WH, Huang CZ (2013) Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules. Anal Chem 85:1424–1430.  https://doi.org/10.1021/ac3023982 CrossRefGoogle Scholar
  13. 13.
    Jia L, Ding L, Tian JW, Bao L, Hu YP, Ju HX, Yu JS (2015) Aptamer loaded MoS2 nanoplates as nanoprobes for detection of intracellular ATP and controllable photodynamic therapy. Nano 7:15953–15961.  https://doi.org/10.1039/C5NR02224J Google Scholar
  14. 14.
    Lin BX, Yu Y, Li RY, Cao YJ, Guo ML (2016) Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sens Actuators B Chem 229:100–109.  https://doi.org/10.1016/j.snb.2016.01.114 CrossRefGoogle Scholar
  15. 15.
    Zhang K, Mei QS, Guan GJ, Liu B, Wang SH, Zhang ZP (2010) Ligand replacement-induced fluorescence switch of quantum dots for ultrasensitive detection of organophosphorothioate pesticides. Anal Chem 82:9579–9586.  https://doi.org/10.1021/ac102531z CrossRefGoogle Scholar
  16. 16.
    Liang YZ, Yu Y, Cao YJ, Hu XG, Wu JZ, Wang WJ, Finlow DE (2010) Recognition of DNA based on changes in the fluorescence intensity of CdSe/CD QDs-phenanthroline systems. Spectrochimca Acta Part A 75:1617–1623.  https://doi.org/10.1016/j.saa.2010.02.030 CrossRefGoogle Scholar
  17. 17.
    Liu QL, Xu SH, Niu CX, Li MF, He DC, Lu ZL, Ma L, Na N, Huang F, Jiang H, Ouyang J (2015) Distinguish cancer cells based on targeting turn-on fluorescence imaging by folate functionalized green emitting carbon dots. Biosens Bioelectron 64:119–125.  https://doi.org/10.1016/j.bios.2014.08.052 CrossRefGoogle Scholar
  18. 18.
    Zhou LN, Cao YJ, Lin BX, Song SS, Yu Y, Shui LL (2017) In-situ visual and ultrasensitive detection of phosmet using a fluorescent immunoassay probe. Sens Actuators B Chem 241:915–922.  https://doi.org/10.1016/j.snb.2016.10.058 CrossRefGoogle Scholar
  19. 19.
    Wang D, Lin BX, Cao YJ, Guo ML, Yu Y (2016) A highly selective and sensitive fluorescence detection method of glyphosate based on an immune reaction strategy of carbon dot labeled antibody and antigen magnetic beads. J Agric Food Chem 64:6042–6050.  https://doi.org/10.1021/acs.jafc.6b01088 CrossRefGoogle Scholar
  20. 20.
    Li N, Hao X, Kang BH, Xu Z, Shi Y, Li NB, Luo HQ (2016) Enzyme-free fluorescent biosensor for the detection of DNA based on core-shell Fe3O4 polydopamine nanoparticles and hybridization chain reaction amplification. Biosens Bioelectron 77:525–529.  https://doi.org/10.1016/j.bios.2015.10.004 CrossRefGoogle Scholar
  21. 21.
    Wang JF, Liu ZM, Zhou ZM (2017) Improving pullulanase catalysis via reversible immobilization on modified Fe3O4@polydopamine nanoparticles. Appl Biochem Biotechnol 182:1467–1477.  https://doi.org/10.1007/s12010-017-2411-x CrossRefGoogle Scholar
  22. 22.
    Su XX, Wang MY, Ouyang H, Yang SJ, Wang WW, He Y, Fu ZF (2017) Bioluminescent detection of the total amount of viable gram-positive bacteria isolated by vancomycin-functionalized magnetic particles. Sens Actuators B Chem 241:255–261.  https://doi.org/10.1016/j.snb.2016.10.042 CrossRefGoogle Scholar
  23. 23.
    Xie YJ, Yan B, Xu HL, Chen J, Liu QX, Deng YH, Zeng HB (2014) Highly regenerable mussel-inspired Fe3O4@polydopamine-ag core-shell microspheres as catalyst and adsorbent for methylene blue removal. ACS Appl Mater Interfaces 6:8845–8852.  https://doi.org/10.1021/am501632f CrossRefGoogle Scholar
  24. 24.
    Shi FP, Li Y, Lin ZH, Ma DX, Su XG (2015) A novel fluorescent probe for adenosine 5′-triphosphate detection based on Zn2+-modulated l-cysteine capped CdTe quantum dots. Sens Actuators B Chem 220:433–440.  https://doi.org/10.1016/j.snb.2015.05.087 CrossRefGoogle Scholar
  25. 25.
    Huo Y, Qi L, Lv XJ, Lai T, Zhang J, Zhang ZQ (2016) A sensitive aptasensor for colorimetric detection of adenosine triphosphate based on the protective effect of ATP-aptamer complexes on unmodified gold nanoparticles. Biosens Bioelectron 78:315–320.  https://doi.org/10.1016/j.bios.2015.11.043 CrossRefGoogle Scholar
  26. 26.
    He YF, Liao LF, Xu CH, Wu RR, Li SJ, Yang YY (2015) Determination of ATP by resonance light scattering usinga binuclear uranyl complex and aptamer modified gold nanoparticles as optical probes. Microchim Acta 182:419–426.  https://doi.org/10.1007/s00604-014-1350-2 CrossRefGoogle Scholar
  27. 27.
    Zhou ZM, Yu Y, Zhao YD (2012) A new strategy for the detection of adenosine triphosphate by aptamer/quantum dot biosensor based on chemiluminescence resonance energy transfer. Analyst 137:4262–4266.  https://doi.org/10.1039/C2AN35520E CrossRefGoogle Scholar
  28. 28.
    Liu XQ, Freeman R, Willner I (2012) Amplified fluorescence aptamer-based sensors using exonuclease III for the regeneration of the analyte. Chem Eur J 18:2207–2211.  https://doi.org/10.1002/chem.201103342 CrossRefGoogle Scholar
  29. 29.
    Wang YM, Liu JW, Duan LY, Liu SJ, Jiang JH (2017) Aptamer-based fluorometric determination of ATP by using target-cycling strand displacement amplification and copper nanoclusters. Microchim Acta 184:4183–4188.  https://doi.org/10.1007/s00604-017-2337-6 CrossRefGoogle Scholar
  30. 30.
    Ning Y, Wei K, Cheng LJ, Hu J, Xiang Q (2017) Fluorometric aptamer based determination of adenosine triphosphate based on deoxyribonuclease I-aided target recycling and signal amplification using graphene oxide as a quencher. Microchim Acta 184:1847–1854.  https://doi.org/10.1007/s00604-017-2194-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Analytical Chemistry for Biomedicine,School of Chemistry and EnvironmentSouth China Normal UniversityGuangzhouChina
  2. 2.GuangzhouPeople’s Republic of China

Personalised recommendations