Microchimica Acta

, 185:242 | Cite as

Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A

  • Xiaohui Ren
  • Emily C. Cheshari
  • Jingyao Qi
  • Xin Li
Original Paper


An efficient approach is demonstrated for preparing particles consisting of a silver core and a shell of molecularly imprinted polymer (Ag@MIP). The MIP is prepared by using bisphenol A (BPA) as the template and 4-vinylpyridine as the functional monomer. The Ag@MIP fulfills a dual function in that the silver core acts as a SERS substrate, while the MIP allows for selective recognition of BPA. The Ag@MIP is characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, thermogravimetric analysis and Raman spectroscopy. The Raman intensity of Ag@MIP is higher than that of bare silver microspheres. The detection limit for BPA is as low as 10−9 mol·L−1.

Graphical abstract

Schematic illustration of the preparation of silver microspheres coated with a molecularly imprinted polymer (Ag@MIPs) for detecting bisphenol A (BPA) by surface enhanced Raman scattering (SERS).


Core-shell system Chemical enhancement Electromagnetic enhancement Endocrine-disrupting chemicals Molecular imprinting 



We are grateful for the financial support of this research from the National Natural Science Foundation of China (51579057, 51379052), and State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2016DX07).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2772_MOESM1_ESM.doc (152 kb)
ESM 1 (DOC 152 kb)


  1. 1.
    Diamanti-Kandarakis E, Bourguignon J-P, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342CrossRefGoogle Scholar
  2. 2.
    Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K (2002) Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 87(11):5185–5190CrossRefGoogle Scholar
  3. 3.
    Kang J-H, Kondo F, Katayama Y (2006) Human exposure to bisphenol A. Toxicology 226:79–89CrossRefGoogle Scholar
  4. 4.
    Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24:199–224CrossRefGoogle Scholar
  5. 5.
    Rubin BS (2011) Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem 127:27–34CrossRefGoogle Scholar
  6. 6.
    Gatidou G, Thomaidis NS, Stasinakis AS, Lekkas TD (2007) Simultaneous determination of the endocrine disrupting compounds nonylphenol, nonylphenol ethoxylates, triclosan and bisphenol A in wastewater and sewage sludge by gas chromatography-mass spectrometry. J Chromatogr A 1138:32–41CrossRefGoogle Scholar
  7. 7.
    Yoshida T, Horie M, Hoshino Y, Nakazawa H (2001) Determination of bisphenol A in canned vegetables and fruit by high performance liquid chromatography. Food Addit Contam 18:69–75CrossRefGoogle Scholar
  8. 8.
    Dadkhah S, Ziaei E, Mehdinia A, Kayyal TB, Jabbari A (2016) A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta 183(6):1933–1941CrossRefGoogle Scholar
  9. 9.
    Ahmed J, Rahman MM, Siddiquey IA, Asiri AM, Hasnat MA (2017) Efficient bisphenol-A detection based on the ternary metal oxide (TMO) composite by electrochemical approaches. Electrochim Acta 246:597–605CrossRefGoogle Scholar
  10. 10.
    Messaoud NB, Ghica ME, Dridi C, Ali MB, Brett CMA (2017) Electrochemical sensor based on multiwalled carbon nanotube andgold nanoparticle modified electrode for the sensitive detection of bisphenol A. Sensors Actuators B 253:513–522CrossRefGoogle Scholar
  11. 11.
    Deng C, Zhong Y, He Y, Ge Y, Song G (2016) Selective determination of trace bisphenol a using molecularly imprinted silica nanoparticles containing quenchable fluorescent silver nanoclusters. Microchim Acta 183(1):431–439CrossRefGoogle Scholar
  12. 12.
    Ohkuma H, Abe K, Ito M, Kokado A, Kambegawa A, Maeda M (2002) Development of a highly sensitive enzyme-linked immunosorbent assay for bisphenol A in serum. Analyst 127:93–97CrossRefGoogle Scholar
  13. 13.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV (2007) Human exposure to bisphenol A (BPA). Reprod Toxicol 24(2):139–177CrossRefGoogle Scholar
  14. 14.
    Stiles PL, Dieringer JA, Shah NC, Van Duyne RP (2008) Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem 1:601–626CrossRefGoogle Scholar
  15. 15.
    Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395CrossRefGoogle Scholar
  16. 16.
    Yuan YF, Lin YN, Gu BB, Panwar N, Tjin SC, Song J, Qu JL, Yong KT (2017) Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives. Coord Chem Rev 339:138–152CrossRefGoogle Scholar
  17. 17.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677CrossRefGoogle Scholar
  18. 18.
    Wei M, Zeng GY, Lu QY (2014) Determination of organophosphate pesticides using an acetylcholinesterase-based biosensor based on a boron-doped diamond electrode modified with gold nanoparticles and carbon spheres. Microchim Acta 181:121–127CrossRefGoogle Scholar
  19. 19.
    Kryscio DR, Peppas NA (2012) Critical review and perspective of macromolecularly imprinted polymers. Acta Biomater 8:461–473CrossRefGoogle Scholar
  20. 20.
    He C, Long Y, Pan J, Li K, Liu F (2007) Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples. J Biochem Biophys Methods 70:133–150CrossRefGoogle Scholar
  21. 21.
    Wan LB, Chen ZL, Huang CX, Shen XT (2017) Core-shell molecularly imprinted particles. TrAC Trend Anal Chem 95:110–121CrossRefGoogle Scholar
  22. 22.
    Kamra T, Zhou T, Montelius L, Schnadt J, Ye L (2015) Implementation of molecularly imprinted polymer beads for surface enhanced Raman detection. Anal Chem 87:5056–5061CrossRefGoogle Scholar
  23. 23.
    Wackerlig J, Lieberzeit PA (2015) Molecularly imprinted polymer nanoparticles in chemical sensing-synthesis, characterisation and application. Sensors Actuators B 207:144–157CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Zhao SJ, Zheng JK, He LL (2017) Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization. TrAC TrAC Trend Anal Chem 90:1–13CrossRefGoogle Scholar
  25. 25.
    Xie CG, Li HF, Li SQ, Gao S (2011) Surface molecular imprinting for chemiluminescence detection of the organophosphate pesticide chlorpyrifos. Microchim Acta 174:311–320CrossRefGoogle Scholar
  26. 26.
    Kostrewa S, Emgenbroich M, Klockow D, Wulff G (2003) Surface-enhanced Raman scattering on molecularly imprinted polymers in water. Macromol Chem Phys 204(3):481–487CrossRefGoogle Scholar
  27. 27.
    Bompart BM, Wilde YD, Haupt K (2010) Chemical nanosensors based on composite molecularly imprinted polymer particles and surface-enhanced Raman scattering. Adv Mater 22:2343–2348CrossRefGoogle Scholar
  28. 28.
    Guo Y, Kang LL, Chen SN, Li X (2015) High performance surface-enhanced Raman scattering from molecular imprinting polymer capsulated silver spheres. Phys Chem Chem Phys 17:21343–21347CrossRefGoogle Scholar
  29. 29.
    Chen SN, Li X, Guo Y, Qi JY (2015) A Ag-molecularly imprinted polymer composite for efficient surface-enhanced Raman scattering activities under a low-energy laser. Analyst 140:3239–3243CrossRefGoogle Scholar
  30. 30.
    Chen SN, Li X, Zhao YY, Chang LM, Qi JY (2014) High performance surface-enhanced Raman scattering via dummy molecular imprinting onto silver microspheres. Chem Commun 50:14331–14333CrossRefGoogle Scholar
  31. 31.
    Zhang B, Xu P, Xie X, Wei H, Li Z, Mack NH, Han X, Xu H, Wang HL (2011) Acid-directed synthesis of SERS-active hierarchical assemblies of silver nanostructures. J Mater Chem 21:2495–2501CrossRefGoogle Scholar
  32. 32.
    Chen SN, Li X, Zhao YY, Chang LM, Qing JY (2015) Graphene oxide shell-isolated Ag nanoparticles for surface-enhanced Raman scattering. Carbon 81:767–772CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Xiaohui Ren
    • 1
  • Emily C. Cheshari
    • 1
    • 2
  • Jingyao Qi
    • 3
  • Xin Li
    • 1
    • 3
  1. 1.MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Chemistry and Biochemistry Department, School of Science and Applied TechnologyLaikipia UniversityNyahururuKenya
  3. 3.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina

Personalised recommendations