Microchimica Acta

, 185:230 | Cite as

Voltammetric chiral discrimination of tryptophan using a multilayer nanocomposite with implemented amino-modified β-cyclodextrin as recognition element

  • Jinyi Song
  • Chengcheng Yang
  • Jiao Ma
  • Qian Han
  • Peiyao Ran
  • Yingzi Fu
Original Paper


An electrochemical chiral multilayer nanocomposite was prepared by modifying a glassy carbon electrode (GCE) via opposite-charge adsorption of amino-modified β-cyclodextrin (NH2-β-CD), gold-platinum core-shell microspheres (Au@Pts), polyethyleneimine (PEI), and multi-walled carbon nanotubes (MWCNTs). The modified GCE was applied to the enantioselective voltammetric determination of tryprophan (Trp). The Au@Pts enable an effective immobilization of the chiral selector (NH2-β-CD) and enhance the electrochemical performance. Scanning electron microscopy, transmission electron microscopy, UV-vis spectroscopy, FTIR and electrochemical methods were used to characterize the nanocomposite. Trp enantiomers were then determined by differential pulse voltammetry (DPV) (with a peak potential of +0.7 V vs. Ag/AgCl). The recognition efficiency was expressed by an increase in peak height by about 32% for DPV determinations of L-Trp compared to D-Trp in case of a 5 mM Trp solution of pH 7.0. Response was linear in the 10 μM to 5.0 mM concentration range, and the limits of detection were 4.3 μM and 5.6 μM with electrochemical sensitivity of 43.5 μA·μM−1·cm−2 and 34.6 μA·μM−1·cm−2 for L-Trp and D-Trp, respectively (at S/N = 3).

Graphical Abstract

Schematic of an electrochemical chiral multilayer nanocomposite composed of multi-walled carbon nanotubes (MWCNTs), polyethyleneimine (PEI), gold-platinum core-shell microspheres (Au@Pt) and amino-modified β-cyclodextrin (NH2-β-CD). It was prepared by modifying a glassy carbon electrode (GCE) for enantioselective voltammetric determination of tryptophan (Trp) enantiomers.


Electrochemistry Chiral recognition Tryptophan enantiomers Gold-platinum core-shell microspheres Amino-β-cyclodextrin Multi-walled carbon nanotubes Polyethyleneimine Opposite-charged adsorption Differential pulse voltammetry Glassy carbon electrode 



The authors gratefully acknowledge financial support for this study by the National Natural Science Foundation of China (No. 21272188).

Compliance with ethical standards

The authors declare that they have no competing interests.

Supplementary material

604_2018_2765_MOESM1_ESM.docx (389 kb)
ESM 1 (DOCX 389 kb)


  1. 1.
    Guo L, Huang Y, Zhang Q, Chen C, Guo D, Chen Y, Fu Y (2014) Electrochemical sensing for naproxen enantiomers using biofunctionalized reduced graphene oxide nanosheets. J Electrochem Soc 161:B70–B74CrossRefGoogle Scholar
  2. 2.
    Prokhorova F, Elena N, Oleg A (2010) Chiral analysis of pharmaceuticals by capillary electrophoresis using antibiotics as chiral selectors. J Pharm Biomed Anal 53:1170–1179CrossRefGoogle Scholar
  3. 3.
    Silva A, Lopes P, Azevedo M, Costa D, Alviano C, Alviano D (2012) Biological activities of α-pinene and β-pinene enantiomers. Molecules 17:6305–6316CrossRefGoogle Scholar
  4. 4.
    Atta N, Galal A, Azab S, Ibrahim A (2015) Electrochemical sensor based on ionic liquid crystal modified carbon paste electrode in presence of surface active agents for enoxacin antibacterial drug. J Electrochem Soc 162:B9–B15CrossRefGoogle Scholar
  5. 5.
    Steinert R, Luscombe-Marsh N, Little T, Standfield S, Otto B, Horowitz M, Feinle-Bisset C (2014) Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J Clin Endocrinol Metab 99:3275–3284CrossRefGoogle Scholar
  6. 6.
    Le Floc’h N, Otten W, Merlot E (2011) Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids 41:1195–1205CrossRefGoogle Scholar
  7. 7.
    Zhen Q, Xu B, Ma L, Tian G, Tang X, Ding M (2011) Simultaneous determination of tryptophan, kynurenine and 5-hydroxytryptamine by HPLC: application in uremic patients undergoing hemodialysis. Clin Biochem 44:226–230CrossRefGoogle Scholar
  8. 8.
    Qing G, He Y, Wang F, Qin H, Hu C, Yang X (2007) Enantioselective fluorescent sensors for chiral carboxylates based on calix [4] arenes bearing an L-tryptophan unit. Eur J Org Chem 11:1768–1778CrossRefGoogle Scholar
  9. 9.
    Wu Y, Wang G, Zhao W, Zhang H, Jing H, Chen A (2014) Chiral separation of phenylalanine and tryptophan by capillary electrophoresis using a mixture of β-CD and chiral ionic liquid ([TBA][l-ASP]) as selectors. Biomed Chromatogr 28:610–614CrossRefGoogle Scholar
  10. 10.
    Zor E, Patir IH, Bingol H, Ersoz M (2013) An electrochemical biosensor based on human serum albumin/graphene oxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of d-and L-tryptophan. Biosens Bioelectron 42:321–3251CrossRefGoogle Scholar
  11. 11.
    Chen Q, Zhou J, Han Q, Wang Y, Fu Y (2012) Electrochemical enantioselective recognition of tryptophane enantiomers based on chiral ligand exchange. Colloids Surf B 92:130–135CrossRefGoogle Scholar
  12. 12.
    Guo L, Zhang Q, Huang Y, Han Q, Wang Y, Fu Y (2013) The application of thionine–graphene nanocomposite in chiral sensing for tryptophan enantiomers. Bioelectrochemistry 94:87–93CrossRefGoogle Scholar
  13. 13.
    Bao L, Chen X, Yang B, Tao Y, Kong Y (2016) Construction of electrochemical chiral interfaces with integrated polysaccharides via amidation. ACS Appl Mater Interfaces 8:21710–21720CrossRefGoogle Scholar
  14. 14.
    Bao L, Tao Y, Gu X, Yang B, Deng L, Kong Y (2016) Potato starch as a highly enantioselective system for temperature-dependent electrochemical recognition of tryptophan isomers. Electrochem Commun 64:21–25CrossRefGoogle Scholar
  15. 15.
    Durán GM, Abellán C, Contento AM, Ríos Á (2017) Discrimination of penicillamine enantiomers using β-cyclodextrin modified CdSe/ZnS quantum dots. Microchim Acta 184:815–824CrossRefGoogle Scholar
  16. 16.
    Tao Y, Chu F, Gu X, Kong Y, Lv Y, Deng L (2018) A novel electrochemical chiral sensor for tyrosine isomers based on a coordination-driven self-assembly. Sensors Actuators B Chem 255:255–261CrossRefGoogle Scholar
  17. 17.
    Zhu G, Gai P, Yang Y, Zhang X, Chen J (2012) Electrochemical sensor for naphthols based on gold nanoparticles/hollow nitrogen-doped carbon microsphere hybrids functionalized with SH-β-cyclodextrin. Anal Chim Acta 723:33–38CrossRefGoogle Scholar
  18. 18.
    Zhu S, Lin X, Ran P, Mo F, Xia Q, Fu Y (2017) A glassy carbon electrode modified with C-dots and silver nanoparticles for enzymatic electrochemiluminescent detection of glutamate enantiomers. Microchim Acta 184:4679–4684CrossRefGoogle Scholar
  19. 19.
    Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Wu A (2017) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184:147–153CrossRefGoogle Scholar
  20. 20.
    Su S, Zhang C, Yuwen L, Liu X, Wang L, Fan C, Wang L (2016) Uniform Au@ Pt core–shell nanodendrites supported on molybdenum disulfide nanosheets for the methanol oxidation reaction. Nano 8:602–608Google Scholar
  21. 21.
    Alizadeh T, Ganjali M, Akhoundian M, Norouzi P (2016) Voltammetric determination of ultratrace levels of cerium (III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchim Acta 183:1123–1130CrossRefGoogle Scholar
  22. 22.
    Jiang L, Zhang W (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407CrossRefGoogle Scholar
  23. 23.
    Dang L, Zhang G, Kan K, Lin Y, Bai F, Shen P, Li L, Shi K (2014) Heterostructured Co3O4/PEI–CNTs composite: fabrication, characterization and CO gas sensors at room temperature. J Mater Chem A 2:4558–4565CrossRefGoogle Scholar
  24. 24.
    Zhang J, Zou H, Qing Q, Yang Y, Li Q, Liu Z, Guo X, Du Z (2003) Effect of chemical oxidation on the structure of single walled carbon nanotubes. J Phys Chem B 107:3712–3718CrossRefGoogle Scholar
  25. 25.
    Zhang W, Yang T, Zhuang X, Guo Z, Jiao K (2009) An ionic liquid supported CeO2 nanoshuttles–carbon nanotubes composite as a platform for impedance DNA hybridization sensing. Biosens Bioelectron 24:2417–2422CrossRefGoogle Scholar
  26. 26.
    Yu L, Liu Q, Wu X, Jiang X, Yu J, Chen X (2015) Chiral electrochemical recognition of tryptophan enantiomers at a multi-walled carbon nanotube–chitosan composite modified glassy carbon electrode. RSC Adv 5:98020–98025CrossRefGoogle Scholar
  27. 27.
    Xu J, Wang Q, Xuan C, Xia Q, Lin X, Fu Y (2016) Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode. Electroanalysis 28:868–873CrossRefGoogle Scholar
  28. 28.
    Yin Z, Zhao W, Lai W, Zhao X (2009) Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments. Corros Sci 51:1702–1706CrossRefGoogle Scholar
  29. 29.
    Yan J, Song H, Yang S, Yan J, Chen X (2008) Preparation and electrochemical properties of composites of carbon nanotubes loaded with Ag and TiO2 nanoparticle for use as anode material in lithium-ion batteries. Electrochim Acta 53:6351–6355CrossRefGoogle Scholar
  30. 30.
    Tao Y, Dai J, Kong Y, Sha Y (2014) Temperature-sensitive electrochemical recognition of tryptophan enantiomers based on β-cyclodextrin self-assembled on poly (L-glutamic acid). Anal Chem 86:2633–2639CrossRefGoogle Scholar
  31. 31.
    Tao Y, Gu X, Yang B, Deng L, Bao L, Kong Y, Qin Y (2017) Electrochemical enantioselective recognition in a highly ordered self-assembly framework. Anal Chem 89:1900–1906CrossRefGoogle Scholar
  32. 32.
    Baek S, Na K (2013) A nano complex of hydrophilic phthalocyanine and polyethylenimine for improved cellular internalization efficiency and phototoxicity. Colloids Surf B Biointerfaces 101:493–500CrossRefGoogle Scholar
  33. 33.
    Xie G, Tian W, Wen L, Xiao K, Zhang Z, Liu Q, Hou G, Li P, Tian Y, Jiang L (2015) Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem Commun 51:3135–3138CrossRefGoogle Scholar
  34. 34.
    Liu C, Li B, Xu C (2014) Colorimetric chiral discrimination and determination of enantiometric excess of D/L-tryptophan using silver nanoparticles. Microchim Acta 181:1407–1413CrossRefGoogle Scholar
  35. 35.
    Feng W, Liu C, Lu S, Zhang C, Zhu X, Liang Y, Nan J (2014) Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181:501–509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Jinyi Song
    • 1
  • Chengcheng Yang
    • 1
  • Jiao Ma
    • 1
  • Qian Han
    • 1
  • Peiyao Ran
    • 1
  • Yingzi Fu
    • 1
  1. 1.Key Laboratory of Luminescence and Real-Time Analysis (Southwest University), Ministry of Education, School of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations