Microchimica Acta

, 185:227 | Cite as

Enantiomeric separation of adrenaline, noradrenaline, and isoprenaline by capillary electrophoresis using streptomycin-modified gold nanoparticles

  • Chunye Liu
  • Jingshu Zhang
  • Xuejiao Zhang
  • Lingzhi Zhao
  • Shuang Li
Original Paper


Enantiomeric separations of the adrenergic compounds adrenaline, noradrenaline, and isoprenaline were studied. Electromigrative separations were performed in uncoated fused silica capillaries using streptomycin-modified gold nanoparticles (ST-AuNPs) as an additive to the background electrolyte. The ST-AuNPs are shown to serve as an effective chiral selector. The modified AuNPs were characterized in terms of size and zeta potential, and by IR and UV-vis spectra. The effects of ST-AuNP concentration, pH value, temperature, and separation voltage on the separations were systematically studied. Under optimized experimental conditions, racemic mixtures of the respective adrenergic drugs were baseline-separated within 7 min with a resolution of up to 7.5. The relative standard deviations of the resolution in inter-day and intra-day studies (n = 5) were generally <5%.

Graphical abstract

Schematic of the method for enantiomeric separations. (A): At low concentrations of streptavidinylated gold nanoparticles (ST-AuNPs), the better matching enantiomer is preferably “transported” by the ST-AuNPs; (B) ST-AuNP concentration increased to an optimal value; (C): The ST-AuNP concentration is too high; even poorly matching enantiomers will be transported simultaneously.


Gold nanoparticles Enantioseparation Capillary electrophoresis Adrenergic drugs Chiral selector 



Adrenaline hydrochloride


Gold nanoparticles


Background electrolyte


Capillary electrophoresis


High performance liquid chromatography


Isoprenaline hydrochloride


Noradrenaline bitartrate


Silica nanoparticles


Carbon nanotubes


Graphene and metal-organic frameworks






Streptomycin modified gold nanoparticles


The retention time of the first enantiomer


Plate number



This work was financially supported by the National Natural Science Foundation of China (81202492), the Foundation of Shaanxi Technology Committee of China (2014 K02-11-01), Provincial Pharmacy Key Discipline (1007) of Xi’an Medical University of China (2016YXXK02), and Natural Science Foundation of Shaanxi Educational Committee of China (17JK0664, 2016JK1652).

Compliance with ethical standards

The authors declare that they have no conflict of interest. All procedures performed in studies do not involve human participants. This article does not contain any studies with animals performed by any of the authors.

Supplementary material

604_2018_2758_MOESM1_ESM.doc (366 kb)
ESM 1 (DOC 366 kb)


  1. 1.
    Yu T, Du Y, Chen B (2011) Evalution of clarithromycin lactobionate as a novel chiral selector for enantiomeric separation of basic drugs in capillary electrophoresis. Electrophoresis 32:1898–1905CrossRefGoogle Scholar
  2. 2.
    Li W, Ding G-S, Tang A-N (2015) Enantiomer separation of propranolol and tryptophan using bovine serum albumin functionalized silica nanoparticles as adsorbents. RSC Adv 5:93850–93857CrossRefGoogle Scholar
  3. 3.
    Acosta G, Silva R, Gil RA, Gomez R, Fernández LP (2013) On-lineenantioseparation of chlorpheniramine using β-cyclodextrin and car-bon nanotubes after multivariate optimization. Talanta 105:167–172CrossRefGoogle Scholar
  4. 4.
    Zhang Q, Zou HF, Wang HL, Ni JY (2000) Synthesis of a silica-bonded bovine serum albumin s-triazine chiral stationary phase for high-performance liquid chromatographic resolution of enantiomers. J Chromatogr A 866:173–181CrossRefGoogle Scholar
  5. 5.
    Płotka JM, Simeonov V, Morrisonc C, Biziuk M, delNozal J (2014) Capillary gas chromatography using aγ-cyclodextrin for enantiomeric separation of methylamphetamine, its precursors and chloro intermediates after optimization of the derivatization reaction. J Chromatogr A 1347:146–156CrossRefGoogle Scholar
  6. 6.
    Toribio L, Bernal JL, Martín MT, Bernal J, delNozal MJ (2014) Effects of organic modifier and temperature on the enantiomeric separation of several azole drugs using supercriticalfluid chromatography and the Chiralpak AD column. Biomed Chromatogr 28:152–158CrossRefGoogle Scholar
  7. 7.
    Gong Z-S, Duan L-P, Tang A-N (2015) Amino-functionalized silica nanoparticles for improvedenantiomeric separation in capillary electrophoresis using carboxymethyl-β-cyclodextrin (CM-β-CD) as a chiral selector. Microchim Acta 182:1297–1304CrossRefGoogle Scholar
  8. 8.
    Zhang Q, Du Y, Du S (2014) Evaluation of ionic liquids-coated carbon nanotubes modified chiral separation system with chondroitin sulfate E as chiral selector in capillary electrophoresis. J Chromatogr A 1339:185–191CrossRefGoogle Scholar
  9. 9.
    Lu JY, Ye FG, Zhang AZ, Wei Z, Peng Y, Zhao SL (2011) Preparation and characterization of silica monolith modified with bovine serum albumin-gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography. J Sep Sci 34:2329–2936Google Scholar
  10. 10.
    Li M, Tarawally M, Liu X, Liu XL, Guo L, Yang L, Wang G (2013) Application of cyclodextrin-modified gold nanoparticles in enantioselective monolith capillary electrochromatography. Talanta 109:1–6CrossRefGoogle Scholar
  11. 11.
    Escuder-Gilabert L, Martin-Biosca Y, Sagrado S, Medina-Hernández MJ (2014) Fast-multivariate optimization of chiral separations in capillary electrophoresis: anticipative strategies. J Chromatogr A1363:331–337CrossRefGoogle Scholar
  12. 12.
    Ali I, Al-Othman ZA, Al-Warthan A, Asnin L, Chudinov A (2014) Advances in chiral separations of small peptides by capillary electrophoresis and chromatography. J Sep Sci 37:2447–2466CrossRefGoogle Scholar
  13. 13.
    Wu CS, Liu FK, Ko FH (2011) Potential role of gold nanoparticles for improved analytical methods: an introduction to characterizations and application. Anal Bioanal Chem 399:103–118CrossRefGoogle Scholar
  14. 14.
    Xu Y, Cao Q, Svec F, Fréchet JMJ (2010) Porous polymer monolithic column with surface-bound gold nanoparticles for the capture and separation of cysteine-containing peptides. Anal Chem 82:3352–3358CrossRefGoogle Scholar
  15. 15.
    Zhao L, Yang L, Wang Q (2016) Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation. J Chromatogr A 1446:125–133CrossRefGoogle Scholar
  16. 16.
    Fang LL, Wang P, Wen XL, Guo X, Luo LD, Yu J, Guo XJ (2017) Layer-by-layer self-assembly of gold nanoparticles/thiols β-cyclodextrin coating as the stationary phase for enhanced chiral differentiation in open tubular capillary electrochromatography. Talanta 167:158–165CrossRefGoogle Scholar
  17. 17.
    Al-Hossaini AM, Suntornsuk L, Lunte SM (2016) Separation of dynorphin peptides by capillary electrochromatography using a polydiallyldimethylammonium chloride gold nanoparticle-modified capillary. Electrophoresis 37:2297–2304CrossRefGoogle Scholar
  18. 18.
    Meisterjahn B, Wagner S, von der Kammer F, Hennecke D, Hofmann T (2016) Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges. J Chromatogr A 1440:150–159CrossRefGoogle Scholar
  19. 19.
    Li M, Liu X, Jiang F, Guo L, Yang L (2011) Enantioselective open-tubular capillary electrochromatography using cyclodextrin-modified gold nanoparticles as stationary phase. J Chromatogr A 1218:3725–3729CrossRefGoogle Scholar
  20. 20.
    Lu J, Ye F, Zhang A, Wei Z, Peng Y, Zhao S (2011) Preparation and characterization of silica monolith modified with bovine serum albumin-gold nanoparticles conjugates and its use as chiral stationary phases for capillary electrochromatography. J Sep Sci 34:2329–2336Google Scholar
  21. 21.
    Liu Z, Du Y, Feng Z (2017) Enantioseparation of drugs by capillary electrochromatography using a stationary phase covalently modified with graphene oxide. Microchim Acta 184:583–593CrossRefGoogle Scholar
  22. 22.
    Neiman B, Grushka E, Lev O (2001) Use of Gold nanoparticles to enhance capillary electrophoresis. Anal Chem 73:5220–5227CrossRefGoogle Scholar
  23. 23.
    Chen Y-L, Shih C-J, Ferrance J, Chang Y-S, Chang J-G, Wu S-W (2009) Genotyping of α-thalassemia deletions using multiplex polymerase chain reactions and gold nanoparticle-filled capillary electrophoresis. J Chromatogr A 1216:1206–1212CrossRefGoogle Scholar
  24. 24.
    Yang L, Chen C, Liu X, Shi J, Wang G, Zhu L, Guo L, Glennon JD, Scully NM, Doherty BE (2010) Use of cyclodextrin-modified gold nanoparticles for enantioseparations of drugs and amino acids based on pseudostationary phase-capillary. Electrophoresis 31:1697–1705CrossRefGoogle Scholar
  25. 25.
    Prokhorova AF, Shapovalova EN, Shpigun OA (2010) Chiral analysis of pharmaceuticals by capillary electrophoresis using antibiotics as chiral selector. J Pharm Biomed Anal 53:1170–1179CrossRefGoogle Scholar
  26. 26.
    Li HF, Zeng H, Chen Z, Lin J-M (2009) Chip-based enantioselective open-tubular capillary electrochromatography using bovine serum albumin-gold nanoparticle conjugates as the stationary phase. Electrophoresis 30:1022–1029CrossRefGoogle Scholar
  27. 27.
    Stavrou IJ, Agathokleous EA, Kapnissi-Christodoulou CP (2016) Chiral selectors in CE: recent development and applications (mid-2014 to 2016). Electrophoresis 38:786–819CrossRefGoogle Scholar
  28. 28.
    Nishi H, Nakamura K, Nakai H, Sato T (1996) Enantiomer separation by capillary electrophoresis using DEAE-dextran and aminoglycosidic antibiotics. Chromatographia 43:426–430CrossRefGoogle Scholar
  29. 29.
    Zhang X, Qi S, Liu C, Zhao X (2017) Enantiomeric separation of five acidic drugs via capillary electrophoresis using streptomycin as chiral selector. J Chromatogr B 1063:31–35CrossRefGoogle Scholar
  30. 30.
    Desiderio C, Fanali F (1998) Chiral analysis by capillary electrophoresis using antibiotics as chiral selector. J Chromatogr A 807:37–56CrossRefGoogle Scholar
  31. 31.
    González-Curbelo MÁ, Varela-Martínez DA, Socas-Rodríguez B, Hernández-Borges J (2017) Recent applications of nanomaterials in capillary electrophoresis. Electrophoresis 38:2431–2446CrossRefGoogle Scholar
  32. 32.
    Peng L-Q, Ye L-H, Cao J, Du L-J, Xu J-J, Zhang Q-D (2017) Separation of metal ions via capillary electrophoresis using a pseudostationary phase microfunctionalized with carbon nanotubes. Microchim Acta 184:1747–1754CrossRefGoogle Scholar
  33. 33.
    Moliner-Martínez Y, Cárdenas S, Valcárcel M (2007) Evaluation of carbon nanostructures as chiral selectors for direct enantiomeric separation of ephedrines by EKC. Electrophoresis 28:2573–2579CrossRefGoogle Scholar
  34. 34.
    Kim T, Lee K, Gong M-S, Joo S-W (2005) Control of gold nanoparticle aggregates by manipulation of interparticle interaction. Langmuir 21:9524–9528CrossRefGoogle Scholar
  35. 35.
    You C-C, De M, Han G, Rotello VM (2005) Tunable inhibition and denaturation of α-chymtrYpsin with amino acid-functionalized gold nanoparticles. J Am Chem Soc 127:12873–12881CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Chunye Liu
    • 1
    • 2
  • Jingshu Zhang
    • 1
    • 2
  • Xuejiao Zhang
    • 1
    • 2
  • Lingzhi Zhao
    • 1
    • 2
  • Shuang Li
    • 1
  1. 1.School of PharmacyXi’an Medical UniversityXi’anChina
  2. 2.Institute of MedicineXi’an Medical UniversityXi’anChina

Personalised recommendations