Microchimica Acta

, 185:218 | Cite as

A ratiometric upconversion nanoprobe for fluorometric turn-on detection of sulfite and bisulfite

  • Shuailiang Wang
  • Xiaozheng Cao
  • Tang Gao
  • Xiaobo Wang
  • Hui Zou
  • Wenbin ZengEmail author
Original Paper


A nanoprobe is described for the ratiometric fluorometric determination of sulfite ions. Upconversion nanoparticles (UCNPs) of the type β-NaYF4:Yb(III),Er(III),Tm(III) were covalently modified with the molecular probe HIAN which is a hydroxynaphthalimide fluorophore modified with a (cationic) indolinium moiety. Under excitation at 980 nm, the green emission of the UCNPs (peaking at 543 nm) is almost totally quenched, while the NIR emission (peaking at 802 nm) remains unaffected. In the presence of sulfite or bisulfite (hydrogen sulfite), the green fluorescence is restored and can be visually observed. A ratiometric method was worked out by measurement of the ratio of the green and NIR emissions. The analytical range extends from 10 to 250 μM, the limit of detection is 0.14 μM, and the assay can be performed within 40 s.

Graphical abstract

Based on the use of a molecular probe for sulfite and hydrogen sulfite, and by exploiting an inner filter effect (IFE), an assay for sulfite/hydrogen sulfite was developed by using upconversion nanoparticles (UCNPs). Addition reaction of sulfite/bisulfite with the material results in weakened IFE and enhanced green fluorescence of the UCNPs at excitation/emission wavelengths of 980/543 nm.


Upconversion luminescence Ratiometric Inner filter effect Sulfite/bisulfite Lanthanide Michael reaction Naphthalimide fluorophores Nanoparticles 



We are grateful for the financial supports from National Natural Science Foundation of China (81741134, 81671756), Key Research Project of Science and Technology Foundation of Hunan Province (2017SK2093) and the Fundamental Research Funds for the Central Universities of Central South University (1053320170134).

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2757_MOESM1_ESM.doc (1.2 mb)
ESM 1 (DOC 1248 kb)


  1. 1.
    Wang XB, Du JB, Cui H (2014) Sulfur dioxide, a double-faced molecule in mammals. Life Sci 98(2):63–67. CrossRefGoogle Scholar
  2. 2.
    Daniels DH, Joe FL Jr, Warner CR, Longfellow SD, Fazio T, Diachenko GW (1992) Survey of sulphites determined in a variety of foods by the optimized Monier-Williams method. Food Addit Contam 9(4):283–289. CrossRefGoogle Scholar
  3. 3.
    Fazio T, Warner CR (1990) A review of sulphites in foods: analytical methodology and reported findings. Food Addit Contam 7(4):433–454. CrossRefGoogle Scholar
  4. 4.
    Stipanuk MH (1986) Metabolism of sulfur-containing amino acids. Annu Rev Nutr 6(1):179–209. CrossRefGoogle Scholar
  5. 5.
    Stipanuk MH, Ueki I (2011) Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 34(1):17–32. CrossRefGoogle Scholar
  6. 6.
    Sang N1, Yun Y, Li H, Hou L, Han M, Li G (2010) SO2 inhalation contributes to the development and progression of ischemic stroke in the brain. Toxicological sciences an official journal of the Society of Toxicology 114 (2):226. 10.1093/toxsci/kfq010Google Scholar
  7. 7.
    Iwasawa S, Kikuchi Y, Nishiwaki Y, Nakano M, Michikawa T, Tsuboi T, Tanaka S, Uemura T, Ishigami A, Nakashima H, Takebayashi T, Adachi M, Morikawa A, Maruyama K, Kudo S, Uchiyama I, Omae K (2009) Effects of SO2 on respiratory system of adult Miyakejima resident 2 years after returning to the island. J Occup Health 51(1):38–47. CrossRefGoogle Scholar
  8. 8.
    Li J, Li R, Meng Z (2010) Sulfur dioxide upregulates the aortic nitric oxide pathw ay in rats. Eur J Pharmacol 645(1–3):143–150. CrossRefGoogle Scholar
  9. 9.
    Wang XB, Jin HF, Tang CS, Du JB (2011) The biological effect of endogenous sulfur dioxide in the cardiovascular system. Eur J Pharmacol 670(1):1–6. CrossRefGoogle Scholar
  10. 10.
    Pundir CS, Rawal R (2013) Determination of sulfite with emphasis on biosensing methods: a review. Anal Bioanal Chem 405(10):3049–3062. CrossRefGoogle Scholar
  11. 11.
    Yuan L, Lin W, Zheng K, He L, Huang W (2013) Far-red to near infrared analyte-responsive fluorescent probes based on organic fluorophore platforms for fluorescence imaging. Chem Soc Rev 42(2):622–661. CrossRefGoogle Scholar
  12. 12.
    Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev 44(6):1379–1415. CrossRefGoogle Scholar
  13. 13.
    Li H, Wang L (2013) NaYF4:Yb3+/Er3+ nanoparticle-based upconversion luminescence resonance energy transfer probe for mercury(II) quantification. Analyst 138(5): 1589–1595.
  14. 14.
    Li H, Dong H, Yu M, Liu C, Li Z, Wei L, Sun LD, Zhang H (2017) NIR ratiometric luminescence detection of pH fluctuation in living cells with hemicyanine derivative-assembled upconversion nanophosphors. Anal Chem 89(17):8863–8869. CrossRefGoogle Scholar
  15. 15.
    Sun LN, Peng H, Stich MI, Achatz D, Wolfbeis OS (2009) pH sensor based on upconverting luminescent lanthanide nanorods. Chem Commun 33:5000–5002. CrossRefGoogle Scholar
  16. 16.
    Wu D, Li G, Chen X, Qiu N, Shi X, Chen G, Sun Z, You J, Wu Y (2017) Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim Acta 184(6):1–9. CrossRefGoogle Scholar
  17. 17.
    Wang C, Feng S, Wu LY, Yan SY, Zhong C, Guo P, Huang R, Weng XC, Zhou X (2014) A new fluorescent turn-on probe for highly sensitive and selective detection of sulfite and bisulfite. Sen Actuators B Chem 190(1):792–799. CrossRefGoogle Scholar
  18. 18.
    Liu X, Yang Q, Chen W, Mo L, Chen S, Kang J, Song X (2015) A ratiometric fluorescent probe for rapid, sensitive and selective detection of sulfur dioxide with large stokes shifts by single wavelength excitation. Organic Biomol Chem 13(32):8663–8668. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Shuailiang Wang
    • 1
  • Xiaozheng Cao
    • 1
  • Tang Gao
    • 1
  • Xiaobo Wang
    • 1
  • Hui Zou
    • 2
  • Wenbin Zeng
    • 1
    Email author
  1. 1.Xiangya School of Pharmaceutical SciencesCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Medical CollegeHunan Normal UniversityChangshaPeople’s Republic of China

Personalised recommendations