Skip to main content
Log in

Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Upconverting nanoparticles (UCNPs) are attractive reporters in immunoassays because of their outstanding detectability. However, non-specific binding of antibody-UCNP conjugates on protein coated solid support results in background, which limits the immunoassay sensitivity. Thus, the full potential of UCNPs as reporters cannot be fully exploited. The authors report here a method to improve the sensitivity of UCNP-based immunoassays by reducing the non-specific binding of antibody-UNCP conjugates on the protein coated solid support. In the assays studied here, poly(acrylic acid) (PAA) coated NaYF4:Yb3+,Er3+ type UCNPs were conjugated to two different antibodies against cardiac troponin I (cTnI) and thyroid stimulating hormone (TSH). The two-step heterogeneous sandwich immunoassays were performed in microtitration wells, and the green luminescence of antibody-UCNP conjugates was measured at 540 nm upon 980 nm excitation. Non-specific binding of antibody-UCNP conjugates was reduced by mixing free PAA with PAA coated UCNPs before adding the UCNPs to the wells. The free PAA in the buffer reduced the background in both cTnI and TSH immunoassays (compared to the control assay without free PAA). The limits of detection decreased from 2.1 ng·L−1 to 0.48 ng·L−1 in case of cTnI and from 0.070 mIU·L−1 to 0.020 mIU·L−1 in case of TSH if PAA is added to the buffer. Presumably, the effect of free PAA is due to blocking of the surface areas where PAA coated UCNP would bind proteins non-specifically. The method introduced here is likely to be applicable to other kinds of PAA-coated nanoparticles, and similar approaches conceivably work also with other nanoparticle coatings.

The presence of free poly(acrylic acid) (PAA) in a buffer solution prevents aggregation and non-specific protein binding of PAA-coated upconverting nanoparticles (UCNPs) in heterogeneous sandwich immunoassays. The decrease in non-specific binding enables distinctly more sensitive assays to be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Quinton J, Kolodych S, Chaumonet M, Bevilacqua V, Nevers MC, Volland H, Gabillet S, Thuéry P, Créminon C, Taran F (2012) Reaction discovery by using a sandwich immunoassay. Angew Chem Int Ed 124:6248–6252

    Article  Google Scholar 

  2. Pei X, Zhang B, Tang J, Liu B, Lai W, Tang D (2013) Sandwich-type immunosensors and immunoassays exploiting nanostructure labels: a review. Anal Chim Acta 758:1–18

    Article  CAS  Google Scholar 

  3. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117:9973–10042

    Article  CAS  Google Scholar 

  4. Amaro M, Oaew S, Surareungchai W (2012) Scano-magneto immunoassay based on carbon nanotubes/gold nanoparticles nanocomposite for Salmonella enterica serovar Typhimurium detection. Biosens Bioelectron 38:157–162

    Article  CAS  Google Scholar 

  5. Soukka T, Paukkunen J, Härmä H, Lönnberg S, Lindroos H, Lövgren T (2001) Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clin Chem 47:1269–1278

    CAS  Google Scholar 

  6. Gorris HH, Resch-Genger U (2017) Perspectives and challenges of photon-upconversion nanoparticles-part II: bioanalytical applications. Anal Bioanal Chem 409:5875–5890

    Article  CAS  Google Scholar 

  7. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829

    Article  CAS  Google Scholar 

  8. Auzel F (2004) Upconversion and anti-stokes processes with f and d ions in solids. Chem Rev 104:139–174

    Article  CAS  Google Scholar 

  9. Wilhelm S, Kaiser M, Würth C, Heiland J, Carrillo-Carrion C, Muhr V, Wolfbeis OS, Parak WJ, Resch-Genger U, Hirsch T (2015) Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nano 7:1403–1410

    CAS  Google Scholar 

  10. Näreoja T, Rosenholm JM, Lamminmäki U, Hänninen PE (2017) Super-sensitive time-resolved fluoroimmunoassay for thyroid-stimulating hormone utilizing europium (III) nanoparticle labels achieved by protein corona stabilization, short binding time, and serum preprocessing. Anal Bioanal Chem 409:3407–3416

    Article  Google Scholar 

  11. Jeyachandran Y, Mielczarski J, Mielczarski E, Rai B (2010) Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. J Colloid Interface Sci 341:136–142

    Article  CAS  Google Scholar 

  12. Trevino J, Calle A, Rodríguez-Frade J, Mellado M, Lechuga L (2009) Determination of human growth hormone in human serum samples by surface plasmon resonance immunoassay. Talanta 78:1011–1016

    Article  CAS  Google Scholar 

  13. Bentzen EL, Tomlinson ID, Mason J, Gresch P, Warnement MR, Wright D, Sanders-Bush E, Blakely R, Rosenthal SJ (2005) Surface modification to reduce nonspecific binding of quantum dots in live cell assays. Bioconjug Chem 16:1488–1494

    Article  CAS  Google Scholar 

  14. Sirkka N, Lyytikäinen A, Savukoski T, Soukka T (2016) Upconverting nanophosphors as reporters in a highly sensitive heterogeneous immunoassay for cardiac troponin I. Anal Chim Acta 925:82–87

    Article  CAS  Google Scholar 

  15. Sedlmeier A, Gorris HH (2015) Surface modification and characterization of photon-upconverting nanoparticles for bioanalytical applications. Chem Soc Rev 44:1526–1560

    Article  CAS  Google Scholar 

  16. Xiong L, Yang T, Yang Y, Xu C, Li F (2010) Long-term in vivo biodistribution imaging and toxicity of polyacrylic acid-coated upconversion nanophosphors. Biomaterials 31:7078–7085

    Article  CAS  Google Scholar 

  17. Wang L, Zhang Y, Zhu Y (2010) One-pot synthesis and strong near-infrared upconversion luminescence of poly (acrylic acid)-functionalized YF3: Yb3+/Er3+ nanocrystals. Nano Res 3:317–325

    Article  CAS  Google Scholar 

  18. Budijono SJ, Shan J, Yao N, Miura Y, Hoye T, Austin RH, Ju Y, Prud’homme RK (2010) Synthesis of stable block-copolymer-protected NaYF4: Yb3+, Er3+ up-converting phosphor nanoparticles. Chem Mater 22:311–318

    Article  CAS  Google Scholar 

  19. Välimaa L, Pettersson K, Vehniäinen M, Karp M, Lövgren T (2003) A high-capacity streptavidin-coated microtitration plate. Bioconjug Chem 14:103–111

    Article  Google Scholar 

  20. Ylikotila J, Hellström JL, Eriksson S, Vehniäinen M, Välimaa L, Takalo H, Bereznikova A, Pettersson K (2006) Utilization of recombinant fab fragments in a cTnI immunoassay conducted in spot wells. Clin Biochem 39:843–850

    Article  CAS  Google Scholar 

  21. Eriksson S, Junikka M, Laitinen P, Majamaa-Voltti K, Alfthan H, Pettersson K (2003) Negative interference in cardiac troponin I immunoassays from a frequently occurring serum and plasma component. Clin Chem 49:1095–1104

    Article  CAS  Google Scholar 

  22. Palo E, Tuomisto M, Hyppänen I, Swart HC, Hölsä J, Soukka T, Lastusaari M (2017) Highly uniform up-converting nanoparticles: why you should control your synthesis even more. J Lumin 185:125–131

    Article  CAS  Google Scholar 

  23. Kuningas K, Rantanen T, Ukonaho T, Lövgren T, Soukka T (2005) Homogeneous assay technology based on upconverting phosphors. Anal Chem 77:7348–7355

    Article  CAS  Google Scholar 

  24. Hyytiä H, Heikkilä T, Hedberg P, Puolakanaho T, Pettersson K (2015) Skeletal troponin I cross-reactivity in different cardiac troponin I assay versions. Clin Biochem 48:313–317

    Article  Google Scholar 

  25. Soukka T, Kuningas K, Rantanen T, Haaslahti V, Lövgren T (2005) Photochemical characterization of up-converting inorganic lanthanide phosphors as potential labels. J Fluoresc 15:513–528

    Article  CAS  Google Scholar 

  26. Liufu S, Xiao H, Li Y (2005) Adsorption of poly (acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. J Colloid Interface Sci 281:155–163

    Article  CAS  Google Scholar 

  27. Lin CL, Lee CF, Chiu WY (2005) Preparation and properties of poly (acrylic acid) oligomer stabilized superparamagnetic ferrofluid. J Colloid Interface Sci 291:411–420

    Article  CAS  Google Scholar 

  28. Naccache R, Vetrone F, Mahalingam V, Cuccia LA, Capobianco JA (2009) Controlled synthesis and water dispersibility of hexagonal phase NaGdF4: Ho3+/Yb3+ nanoparticles. Chem Mater 21:717–723

    Article  CAS  Google Scholar 

  29. Ipe BI, Shukla A, Lu H, Zou B, Rehage H, Niemeyer CM (2006) Dynamic light-scattering analysis of the electrostatic interaction of hexahistidine-tagged cytochrome P450 enzyme with semiconductor quantum dots. Chem PhysChem 7:1112–1118

    CAS  Google Scholar 

  30. Gambinossi F, Mylon SE, Ferri JK (2015) Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interface 222:332–349

    Article  CAS  Google Scholar 

  31. Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J (2017) Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem 63:73–81

    Article  CAS  Google Scholar 

  32. Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y (2008) Design of poly (ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. Langmuir 24:8864–8870

    Article  CAS  Google Scholar 

  33. Hilderbrand SA, Shao F, Salthouse C, Mahmood U, Weissleder R (2009) Upconverting luminescent nanomaterials: application to in vivo bioimaging. Chem Commun 28:4188–4190

Download references

Acknowledgments

This study was supported by Tekes, the Finnish Funding Agency for Innovation and the Doctoral Programme of Molecular Life Sciences. The authors wish to thank Jessica Rosenholm from Åbo Akademi for assisting with the DLS measurements and Raili Kronström for the technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satu Lahtinen.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 381 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahtinen, S., Lyytikäinen, A., Sirkka, N. et al. Improving the sensitivity of immunoassays by reducing non-specific binding of poly(acrylic acid) coated upconverting nanoparticles by adding free poly(acrylic acid). Microchim Acta 185, 220 (2018). https://doi.org/10.1007/s00604-018-2756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2756-z

Keywords

Navigation