Advertisement

Microchimica Acta

, 185:213 | Cite as

A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides

  • Nirav Joshi
  • Takeshi Hayasaka
  • Yumeng Liu
  • Huiliang Liu
  • Osvaldo N. OliveiraJr
  • Liwei Lin
Review Article

Abstract

Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures (mainly oxides of Sn, Ni, Zn, W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides, reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT sensing of gases such as NOx, NH3, H2, SO2, CO, and of vapors such as of acetone, formaldehyde or methanol. Attractive features also include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed.

Graphical Abstract

The review summarizes the most significant progresses related to room temperature gas sensing by using hierarchical oxide nanostructures, graphene and its derivatives and 2D transition metal dichalcogenides, highlighting the peculiar gas sensing behavior with enhanced selectivity, sensitivity and long-term stability.

Keywords

Nanosensors, 2D Materials Thin Films Selectivity Sensitivity Surface reaction Gas sensors Semiconductors Chemiresistive gas sensors 

Notes

Acknowledgements

This work had financial support in part from FAPESP (2014/23546-1, 2016/23474-6), in part from Midea Group, and in part by a National Science Foundation grant (ECCS 1711227). The authors are also thankful to Berkeley Sensor and Actuator Centre (BSAC). Professor Liwei Lin is a core-principal investigator of the Tsinghua-Berkeley Shenzhen Institute (TBSI) and acknowledge the funding support of TBSI.

Compliance with ethical standards

The authors declare that they have no competing interests.

References

  1. 1.
    Dieter K (2001) Function and applications of gas sensors. J Phys D Appl Phys 34(19):R125CrossRefGoogle Scholar
  2. 2.
    Fine GF, Cavanagh LM, Afonja A, Binions R (2010) Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors (Basel, Switzerland) 10(6):5469–5502.  https://doi.org/10.3390/s100605469 CrossRefGoogle Scholar
  3. 3.
    Zhang J, Qin Z, Zeng D, Xie C (2017) Metal-oxide-semiconductor based gas sensors: screening, preparation, and integration. Phys Chem Chem Phys 19(9):6313–6329.  https://doi.org/10.1039/c6cp07799d CrossRefGoogle Scholar
  4. 4.
    Varghese SS, Lonkar S, Singh KK, Swaminathan S, Abdala A (2015) Recent advances in graphene based gas sensors. Sensors Actuators B Chem 218(Supplement C):160–183.  https://doi.org/10.1016/j.snb.2015.04.062 CrossRefGoogle Scholar
  5. 5.
    Gusain A, Joshi NJ, Varde PV, Aswal DK (2017) Flexible NO gas sensor based on conducting polymer poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT). Sensors Actuators B Chem 239:734–745.  https://doi.org/10.1016/j.snb.2016.07.176 CrossRefGoogle Scholar
  6. 6.
    Joshi N, Saxena V, Singh A, Koiry SP, Debnath AK, Chehimi MM, Aswal DK, Gupta SK (2014) Flexible H2S sensor based on gold modified polycarbazole films. Sensors Actuators B Chem 200(Supplement C):227–234.  https://doi.org/10.1016/j.snb.2014.04.041 CrossRefGoogle Scholar
  7. 7.
    Yoriya S, Prakasam HE, Varghese OK, Shankar K, Paulose M, Mor GK, Latempa TJ, Grimes CA (2006) Initial Studies on the Hydrogen Gas Sensing Properties of Highly-Ordered High Aspect Ratio TiO2 Nanotube-Arrays 20 m to 222 m in Length. Sens Lett 4(3):334–339.  https://doi.org/10.1166/sl.2006.042 CrossRefGoogle Scholar
  8. 8.
    Singh A, Kumar A, Kumar A, Samanta S, Joshi N, Balouria V, Debnath AK, Prasad R, Salmi Z, Chehimi MM, Aswal DK, Gupta SK (2013) Bending stress induced improved chemiresistive gas sensing characteristics of flexible cobalt-phthalocyanine thin films. Appl Phys Lett 102(13):132107.  https://doi.org/10.1063/1.4800446 CrossRefGoogle Scholar
  9. 9.
    Ramgir N, Datta N, Kaur M, Kailasaganapathi S, Debnath AK, Aswal DK, Gupta SK (2013) Metal oxide nanowires for chemiresistive gas sensors: Issues, challenges and prospects. Colloids Surf A Physicochem Eng Asp 439:101–116.  https://doi.org/10.1016/j.colsurfa.2013.02.029 CrossRefGoogle Scholar
  10. 10.
    Shaik M, Rao VK, Gupta M, Murthy KSRC, Jain R (2016) Chemiresistive gas sensor for the sensitive detection of nitrogen dioxide based on nitrogen doped graphene nanosheets. RSC Adv 6(2):1527–1534.  https://doi.org/10.1039/c5ra21184k CrossRefGoogle Scholar
  11. 11.
    Mirica KA, Azzarelli JM, Weis JG, Schnorr JM, Swager TM (2013) Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc Natl Acad Sci 110(35):E3265–E3270.  https://doi.org/10.1073/pnas.1307251110 CrossRefGoogle Scholar
  12. 12.
    Joshi N, da Silva LF, Jadhav H, M'Peko J-C, Millan Torres BB, Aguir K, Mastelaro VR, Oliveira ON (2016) One-step approach for preparing ozone gas sensors based on hierarchical NiCo2O4 structures. RSC Adv 6(95):92655–92662.  https://doi.org/10.1039/c6ra18384k CrossRefGoogle Scholar
  13. 13.
    Kumar A, Joshi N, Samanta S, Singh A, Debnath AK, Chauhan AK, Roy M, Prasad R, Roy K, Chehimi MM, Aswal DK, Gupta SK (2015) Room temperature detection of H2S by flexible gold–cobalt phthalocyanine heterojunction thin films. Sensors Actuators B Chem 206(Supplement C):653–662.  https://doi.org/10.1016/j.snb.2014.09.074 CrossRefGoogle Scholar
  14. 14.
    Balouria V, Samanta S, Singh A, Debnath AK, Mahajan A, Bedi RK, Aswal DK, Gupta SK (2013) Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films. Sensors Actuators B Chem 176(Supplement C):38–45.  https://doi.org/10.1016/j.snb.2012.08.064 CrossRefGoogle Scholar
  15. 15.
    Joshi N, Shimizu FM, Awan IT, M’Peko JC, Mastelaro VR, Oliveira ON, Da Silva LF (2016) Ozone sensing properties of nickel phthalocyanine:ZnO nanorod heterostructures. In: IEEE Sensors, Orlando, USA. In Proceedings of IEEE Sensors, pp 1-3. doi: https://doi.org/10.1109/ICSENS.2016.7808407
  16. 16.
    Seiyama T, Kato A, Fujiishi K, Nagatani M (1962) A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal Chem 34(11):1502–1503.  https://doi.org/10.1021/ac60191a001 CrossRefGoogle Scholar
  17. 17.
    Rane YN, Shende DA, Raghuwanshi MG, Ghule AV, Patil VL, Patil PS, Gosavi SR, Deshpande NG (2017) Synthesis of flower shaped ZnO thin films for resistive sensing of NO2 gas. Microchim Acta 184(7):2455–2463.  https://doi.org/10.1007/s00604-017-2271-7 CrossRefGoogle Scholar
  18. 18.
    Yadav AA, Lokhande VC, Bulakhe RN, Lokhande CD (2017) Amperometric CO2 gas sensor based on interconnected web-like nanoparticles of La2O3 synthesized by ultrasonic spray pyrolysis. Microchim Acta 184(10):3713–3720.  https://doi.org/10.1007/s00604-017-2364-3 CrossRefGoogle Scholar
  19. 19.
    Ponnusamy D, Prasad AK, Madanagurusamy S (2016) CdO-TiO2 nanocomposite thin films for resistive hydrogen sensing. Microchim Acta 183(1):311–317.  https://doi.org/10.1007/s00604-015-1653-y CrossRefGoogle Scholar
  20. 20.
    Tian J, Yang G, Jiang D, Su F, Zhang Z (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchimica Acta 183(11):2871–2878.  https://doi.org/10.1007/s00604-016-1912-6 CrossRefGoogle Scholar
  21. 21.
    Rahman MM, Balkhoyor HB, Asiri AM, Marwani HM (2016) A gold electrode modified with silver oxide nanoparticle decorated carbon nanotubes for electrochemical sensing of dissolved ammonia. Microchim Acta 183(5):1677–1685.  https://doi.org/10.1007/s00604-016-1797-4 CrossRefGoogle Scholar
  22. 22.
    Tamvakos A, Calestani D, Tamvakos D, Mosca R, Pullini D, Pruna A (2015) Effect of grain-size on the ethanol vapor sensing properties of room-temperature sputtered ZnO thin films. Microchim Acta 182(11):1991–1999.  https://doi.org/10.1007/s00604-015-1539-z CrossRefGoogle Scholar
  23. 23.
    Hasani A, Dehsari HS, Gavgani JN, Shalamzari EK, Salehi A, Afshar Taromi F, Mahyari M (2015) Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide. Microchim Acta 182(7):1551–1559.  https://doi.org/10.1007/s00604-015-1487-7 CrossRefGoogle Scholar
  24. 24.
    Mekki A, Joshi N, Singh A, Salmi Z, Jha P, Decorse P, Lau-Truong S, Mahmoud R, Chehimi MM, Aswal DK, Gupta SK (2014) H2S sensing using in situ photo-polymerized polyaniline–silver nanocomposite films on flexible substrates. Org Electron 15(1):71–81.  https://doi.org/10.1016/j.orgel.2013.10.012 CrossRefGoogle Scholar
  25. 25.
    Bae JS, Yun DH, Park CO, Hwang JS (2001) Improved selectivity of oxide semiconductor type gas sensor using compensating element. Sensors Actuators B Chem 75(3):160–165.  https://doi.org/10.1016/S0925-4005(00)00738-3 CrossRefGoogle Scholar
  26. 26.
    Stankova M, Vilanova X, Calderer J, Llobet E, Brezmes J, Gràcia I, Cané C, Correig X (2006) Sensitivity and selectivity improvement of rf sputtered WO3 microhotplate gas sensors. Sensors Actuators B Chem 113(1):241–248.  https://doi.org/10.1016/j.snb.2005.02.056 CrossRefGoogle Scholar
  27. 27.
    Rigoni F, Tognolini S, Borghetti P, Drera G, Pagliara S, Goldoni A, Sangaletti L (2013) Enhancing the sensitivity of chemiresistor gas sensors based on pristine carbon nanotubes to detect low-ppb ammonia concentrations in the environment. Analyst 138(24):7392–7399.  https://doi.org/10.1039/c3an01209c CrossRefGoogle Scholar
  28. 28.
    Mortazavi Zanjani SM, Sadeghi MM, Holt M, Chowdhury SF, Tao L, Akinwande D (2016) Enhanced sensitivity of graphene ammonia gas sensors using molecular doping. Appl Phys Lett 108(3):033106.  https://doi.org/10.1063/1.4940128 CrossRefGoogle Scholar
  29. 29.
    Singh A, Salmi Z, Joshi N, Jha P, Kumar A, Lecoq H, Lau S, Chehimi MM, Aswal DK, Gupta SK (2013) Photo-induced synthesis of polypyrrole-silver nanocomposite films on N-(3-trimethoxysilylpropyl)pyrrole-modified biaxially oriented polyethylene terephthalate flexible substrates. RSC Adv 3(16):5506–5523.  https://doi.org/10.1039/c3ra22981e CrossRefGoogle Scholar
  30. 30.
    Saboor FH, Ueda T, Kamada K, Hyodo T, Mortazavi Y, Khodadadi AA, Shimizu Y (2016) Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sensors Actuators B Chem 223(Supplement C):429–439.  https://doi.org/10.1016/j.snb.2015.09.075 CrossRefGoogle Scholar
  31. 31.
    Ueda T, Abe H, Kamada K, Bishop SR, Tuller HL, Hyodo T, Shimizu Y (2017) Enhanced sensing response of solid-electrolyte gas sensors to toluene: Role of composite Au/metal oxide sensing electrode. Sensors Actuators B Chem 252(Supplement C):268–276.  https://doi.org/10.1016/j.snb.2017.05.172 CrossRefGoogle Scholar
  32. 32.
    Ponzoni A, Baratto C, Cattabiani N, Falasconi M, Galstyan V, Nunez-Carmona E, Rigoni F, Sberveglieri V, Zambotti G, Zappa D (2017) Metal Oxide Gas Sensors, a Survey of Selectivity Issues Addressed at the SENSOR Lab, Brescia (Italy). Sensors 17(4).  https://doi.org/10.3390/s17040714
  33. 33.
    Gessner T, Gottfried K, Hoffmann R, Kaufmann C, Weiss U, Charetdinov E, Hauptmann P, Lucklum R, Zimmermann B, Dietel U, Springer G, Vogel M (2000) Metal oxide gas sensor for high temperature application. Microsyst Technol 6(5):169–174.  https://doi.org/10.1007/s005420000048 CrossRefGoogle Scholar
  34. 34.
    Wang C, Yin L, Zhang L, Xiang D, Gao R (2010) Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors (Basel, Switzerland) 10(3):2088–2106.  https://doi.org/10.3390/s100302088 CrossRefGoogle Scholar
  35. 35.
    Arbab A, Spetz A, Lundström I (1993) Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Sensors Actuators B Chem 15(1):19–23.  https://doi.org/10.1016/0925-4005(93)85022-3 CrossRefGoogle Scholar
  36. 36.
    Yoon H (2013) Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials 3(3):524–549.  https://doi.org/10.3390/nano3030524 CrossRefGoogle Scholar
  37. 37.
    Bai H, Shi G (2007) Gas Sensors Based on Conducting Polymers. Sensors (Basel, Switzerland) 7(3):267–307CrossRefGoogle Scholar
  38. 38.
    Miasik JJ, Hooper A, Tofield BC (1986) Conducting polymer gas sensors. J Chem Soc Faraday Trans 1 82(4):1117–1126.  https://doi.org/10.1039/f19868201117 CrossRefGoogle Scholar
  39. 39.
    Chen G, Paronyan TM, Pigos EM, Harutyunyan AR (2012) Enhanced gas sensing in pristine carbon nanotubes under continuous ultraviolet light illumination. 2:343.  https://doi.org/10.1038/srep00343
  40. 40.
    Majhi SM, Rai P, Yu Y-T (2015) Facile Approach to Synthesize Au@ZnO Core–Shell Nanoparticles and Their Application for Highly Sensitive and Selective Gas Sensors. ACS Appl Mater Interfaces 7(18):9462–9468.  https://doi.org/10.1021/acsami.5b00055 CrossRefGoogle Scholar
  41. 41.
    Tian H, Fan H, Dong G, Ma L, Ma J (2016) NiO/ZnO p-n heterostructures and their gas sensing properties for reduced operating temperature. RSC Adv 6(110):109091–109098.  https://doi.org/10.1039/c6ra19520b CrossRefGoogle Scholar
  42. 42.
    Schütt F, Postica V, Adelung R, Lupan O (2017) Single and Networked ZnO–CNT Hybrid Tetrapods for Selective Room-Temperature High-Performance Ammonia Sensors. ACS Appl Mater Interfaces 9(27):23107–23118.  https://doi.org/10.1021/acsami.7b03702 CrossRefGoogle Scholar
  43. 43.
    Mishra YK, Modi G, Cretu V, Postica V, Lupan O, Reimer T, Paulowicz I, Hrkac V, Benecke W, Kienle L, Adelung R (2015) Direct Growth of Freestanding ZnO Tetrapod Networks for Multifunctional Applications in Photocatalysis, UV Photodetection, and Gas Sensing. ACS Appl Mater Interfaces 7(26):14303–14316.  https://doi.org/10.1021/acsami.5b02816 CrossRefGoogle Scholar
  44. 44.
    Lupan O, Postica V, Gröttrup J, Mishra AK, de Leeuw NH, Carreira JFC, Rodrigues J, Ben Sedrine N, Correia MR, Monteiro T, Cretu V, Tiginyanu I, Smazna D, Mishra YK, Adelung R (2017) Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications. ACS Appl Mater Interfaces 9(4):4084–4099.  https://doi.org/10.1021/acsami.6b11337 CrossRefGoogle Scholar
  45. 45.
    Zhang J, Liu X, Neri G, Pinna N (2016) Nanostructured Materials for Room-Temperature Gas Sensors. Adv Mater 28(5):795–831.  https://doi.org/10.1002/adma.201503825 CrossRefGoogle Scholar
  46. 46.
    Yang S, Jiang C, S-h W (2017) Gas sensing in 2D materials. Appl Phys Rev 4(2):021304.  https://doi.org/10.1063/1.4983310 CrossRefGoogle Scholar
  47. 47.
    Aswal DK, Gupta SK (2007) Science and Technology of Chemiresistor Gas Sensors. Nova Science Publishers, New YorkGoogle Scholar
  48. 48.
    Bishnoi A, Kumar S, Joshi N (2017) Chapter 9 - Wide-Angle X-ray Diffraction (WXRD): Technique for Characterization of Nanomaterials and Polymer Nanocomposites A2 - Thomas, Sabu. In: Zachariah AK, Mishra RK (eds) Thomas R. Microscopy Methods in Nanomaterials Characterization. Elsevier, Amsterdam, pp 313–337.  https://doi.org/10.1016/B978-0-323-46141-2.00009-2
  49. 49.
    Ren Z, Guo Y, Liu C-H, Gao P-X (2013) Hierarchically nanostructured materials for sustainable environmental applications. Front Chem 1:18Google Scholar
  50. 50.
    Li J, Wang J, Wexler D, Shi D, Liang J, Liu H, Xiong S, Qian Y (2013) Simple synthesis of yolk-shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J Mater Chem A 1(48):15292–15299.  https://doi.org/10.1039/c3ta13787b CrossRefGoogle Scholar
  51. 51.
    Vuong NM, Chinh ND, Huy BT, Lee Y-I (2016) CuO-Decorated ZnO Hierarchical Nanostructures as Efficient and Established Sensing Materials for H2S Gas. Sensors 6:26736.  https://doi.org/10.1038/srep26736 https://www.nature.com/articles/srep26736#supplementary-information Google Scholar
  52. 52.
    Bu-Yu Y, Ping-Fu H, Wenjea JT (2017) Enhanced room-temperature NO 2 gas sensing with TeO 2 /SnO 2 brush- and bead-like nanowire hybrid structures. Nanotechnology 28(4):045501CrossRefGoogle Scholar
  53. 53.
    Joshi N, da Silva LF, Jadhav HS, Shimizu FM, Suman PH, M’Peko J-C, Orlandi MO, Seo JG, Mastelaro VR, Oliveira ON (2018) Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sensors Actuators B Chem 257(Supplement C):906–915.  https://doi.org/10.1016/j.snb.2017.11.041 CrossRefGoogle Scholar
  54. 54.
    Li H, Yin Z, He Q, Li H, Huang X, Lu G, Fam DWH, Tok AIY, Zhang Q, Zhang H (2012) Fabrication of Single- and Multilayer MoS2 Film-Based Field-Effect Transistors for Sensing NO at Room Temperature. Small 8(1):63–67.  https://doi.org/10.1002/smll.201101016 CrossRefGoogle Scholar
  55. 55.
    Gaiardo A, Fabbri B, Guidi V, Bellutti P, Giberti A, Gherardi S, Vanzetti L, Malagù C, Zonta G (2016) Metal Sulfides as Sensing Materials for Chemoresistive Gas Sensors. Sensors 16(3):296.  https://doi.org/10.3390/s16030296 CrossRefGoogle Scholar
  56. 56.
    Cho S-Y, Koh H-J, Yoo H-W, Kim J-S, Jung H-T (2017) Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. ACS Sensors 2(1):183–189.  https://doi.org/10.1021/acssensors.6b00801 CrossRefGoogle Scholar
  57. 57.
    Wee SH, Huang P-S, Lee J-K, Goyal A (2015) Heteroepitaxial Cu(2)O thin film solar cell on metallic substrates. Sci Report 5:16272.  https://doi.org/10.1038/srep16272 CrossRefGoogle Scholar
  58. 58.
    Gao T, Huang P-S, Lee J-K, Leu PW (2015) Hierarchical metal nanomesh/microgrid structures for high performance transparent electrodes. RSC Adv 5(87):70713–70717.  https://doi.org/10.1039/c5ra14851k CrossRefGoogle Scholar
  59. 59.
    Joshi NJ, Grewal GS, Shrinet V, Pratap A, Buch NJ (2010) Synthesis and Characterization of Nano-Barium Titanate Prepared by Hydrothermal Process. Integr Ferroelectr 115(1):142–148.  https://doi.org/10.1080/10584587.2010.496614 CrossRefGoogle Scholar
  60. 60.
    Xu N, Zhang Q, Yang H, Xia Y, Jiang Y (2017) In-situ preparation of hierarchical flower-like TiO2/carbon nanostructures as fillers for polymer composites with enhanced dielectric properties. 7:43970.  https://doi.org/10.1038/srep43970
  61. 61.
    Singh A, Salmi Z, Jha P, Joshi N, Kumar A, Decorse P, Lecoq H, Lau-Truong S, Aswal DK, Gupta SK, Chehimi MM (2013) One step synthesis of highly ordered free standing flexible polypyrrole-silver nanocomposite films at air-water interface by photopolymerization. RSC Adv 3(32):13329–13336.  https://doi.org/10.1039/c3ra40884a CrossRefGoogle Scholar
  62. 62.
    Joshi NJ, Govindan TP, Shrinet V, Govindan TP, Pratap A (2012) Synthesis and dielectric behavior of nano-scale barium titanate. IEEE Trans Dielectr Electr Insul 19(1):83–90.  https://doi.org/10.1109/TDEI.2012.6148505 CrossRefGoogle Scholar
  63. 63.
    Singh A, Salmi Z, Joshi N, Jha P, Decorse P, Lecoq H, Lau-Truong S, Jouini M, Aswal DK, Chehimi MM (2013) Electrochemical investigation of free-standing polypyrrole-silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv 3(46):24567–24575.  https://doi.org/10.1039/C3RA42786B CrossRefGoogle Scholar
  64. 64.
    Çelikbilek Ӧ, Jauffrès D, Siebert E, Dessemond L, Burriel M, Martin CL, Djurado E (2016) Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells. J Power Sources 333:72–82.  https://doi.org/10.1016/j.jpowsour.2016.09.156 CrossRefGoogle Scholar
  65. 65.
    Mahmoud BG, Khairy M, Rashwan FA, Foster CW, Banks CE (2016) Self-assembly of porous copper oxide hierarchical nanostructures for selective determinations of glucose and ascorbic acid. RSC Adv 6(18):14474–14482.  https://doi.org/10.1039/c5ra22940e CrossRefGoogle Scholar
  66. 66.
    Navale YH, Navale ST, Ramgir NS, Stadler FJ, Gupta SK, Aswal DK, Patil VB (2017) Zinc oxide hierarchical nanostructures as potential NO2 sensors. Sensors Actuators B Chem 251:551–563.  https://doi.org/10.1016/j.snb.2017.05.085 CrossRefGoogle Scholar
  67. 67.
    Ou G, Fan P, Zhang H, Huang K, Yang C, Yu W, Wei H, Zhong M, Wu H, Li Y (2017) Large-scale hierarchical oxide nanostructures for high-performance electrocatalytic water splitting. Nano Energy 35:207–214.  https://doi.org/10.1016/j.nanoen.2017.03.049 CrossRefGoogle Scholar
  68. 68.
    Huang P-S, Qin F, Xiong Z, Shim H-W, Gao T, Leu P, Lee J-K (2017) Novel Carrier Doping Mechanism for Transparent Conductor: Electron Donation from Embedded Ag Nanoparticles to the Oxide Matrix. ACS Appl Mater Interfaces 9(23):19973–19979.  https://doi.org/10.1021/acsami.7b03871 CrossRefGoogle Scholar
  69. 69.
    Mishra YK, Adelung R (2017) ZnO tetrapod materials for functional applications. Mater Today.  https://doi.org/10.1016/j.mattod.2017.11.003
  70. 70.
    Postica V, Gröttrup J, Adelung R, Lupan O, Mishra AK, de Leeuw NH, Ababii N, Carreira JFC, Rodrigues J, Sedrine NB, Correia MR, Monteiro T, Sontea V, Mishra YK (2017) Nanosensors: Multifunctional Materials: A Case Study of the Effects of Metal Doping on ZnO Tetrapods with Bismuth and Tin Oxides (Adv. Funct. Mater. 6/2017). Adv Funct Mater 27(6):n/a–n/a.  https://doi.org/10.1002/adfm.201770036 Google Scholar
  71. 71.
    Paulowicz I, Hrkac V, Kaps S, Cretu V, Lupan O, Braniste T, Duppel V, Tiginyanu I, Kienle L, Adelung R, Mishra YK (2015) Three-Dimensional SnO2 Nanowire Networks for Multifunctional Applications: From High-Temperature Stretchable Ceramics to Ultraresponsive Sensors. Adv Electron Mater 1(8):1500081–1500n/a.  https://doi.org/10.1002/aelm.201500081 CrossRefGoogle Scholar
  72. 72.
    Kaps S, Bhowmick S, Gröttrup J, Hrkac V, Stauffer D, Guo H, Warren OL, Adam J, Kienle L, Minor AM, Adelung R, Mishra YK (2017) Piezoresistive Response of Quasi-One-Dimensional ZnO Nanowires Using an in Situ Electromechanical Device. ACS Omega 2(6):2985–2993.  https://doi.org/10.1021/acsomega.7b00041 CrossRefGoogle Scholar
  73. 73.
    Tiginyanu I, Ghimpu L, Gröttrup J, Postolache V, Mecklenburg M, Stevens-Kalceff MA, Ursaki V, Payami N, Feidenhansl R, Schulte K, Adelung R, Mishra YK (2016) Strong light scattering and broadband (UV to IR) photoabsorption in stretchable 3D hybrid architectures based on Aerographite decorated by ZnO nanocrystallites. Sci Report 6:32913.  https://doi.org/10.1038/srep32913 https://www.nature.com/articles/srep32913#supplementary-information CrossRefGoogle Scholar
  74. 74.
    Jiang C, Zhang G, Wu Y, Li L, Shi K (2012) Facile synthesis of SnO2 nanocrystalline tubes by electrospinning and their fast response and high sensitivity to NOx at room temperature. Cryst Eng Comm 14(8):2739–2747.  https://doi.org/10.1039/c2ce06405g CrossRefGoogle Scholar
  75. 75.
    Wang Y, Jiang X, Xia Y (2003) A Solution-Phase, Precursor Route to Polycrystalline SnO2 Nanowires That Can Be Used for Gas Sensing under Ambient Conditions. J Am Chem Soc 125(52):16176–16177.  https://doi.org/10.1021/ja037743f CrossRefGoogle Scholar
  76. 76.
    Khun Khun K, Mahajan A, Bedi RK (2009) SnO2 thick films for room temperature gas sensing applications. J Appl Physiol 106(12):124509.  https://doi.org/10.1063/1.3273323 CrossRefGoogle Scholar
  77. 77.
    Li Z, Wang N, Lin Z, Wang J, Liu W, Sun K, Fu YQ, Wang Z (2016) Room-Temperature High-Performance H2S Sensor Based on Porous CuO Nanosheets Prepared by Hydrothermal Method. ACS Appl Mater Interfaces 8(32):20962–20968.  https://doi.org/10.1021/acsami.6b02893 CrossRefGoogle Scholar
  78. 78.
    Bhuvaneshwari S, Papachan S, Gopalakrishnan N (2017) Free standing CuO-MnO2 nanocomposite for room temperature ammonia sensing. AIP Conf Proc 1832(1):050126.  https://doi.org/10.1063/1.4980359 CrossRefGoogle Scholar
  79. 79.
    Wang J, Wei L, Zhang L, Jiang C, Siu-Wai Kong E, Zhang Y (2012) Preparation of high aspect ratio nickel oxide nanowires and their gas sensing devices with fast response and high sensitivity. J Mater Chem 22(17):8327–8335.  https://doi.org/10.1039/c2jm16934g CrossRefGoogle Scholar
  80. 80.
    Jaisutti R, Lee M, Kim J, Choi S, Ha T-J, Kim J, Kim H, Park SK, Kim Y-H (2017) Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na:ZnO Nanoflowers for Diabetes Detection. ACS Appl Mater Interfaces 9(10):8796–8804.  https://doi.org/10.1021/acsami.7b00673 CrossRefGoogle Scholar
  81. 81.
    Perfecto TM, Zito CA, Volanti DP (2017) Design of nanostructured WO3[middle dot]0.33H2O via combination of ultrasonic spray nozzle and microwave-assisted hydrothermal methods for enhancing isopropanol gas sensing at room temperature. Cryst Eng Comm 19(20):2733–2738.  https://doi.org/10.1039/c7ce00523g CrossRefGoogle Scholar
  82. 82.
    Gao J, Wu H, Zhou J, Yao L, Zhang G, Xu S, Xie Y, Li L, Shi K (2016) Mesoporous In2O3 nanocrystals: synthesis, characterization and NOx gas sensor at room temperature. New J Chem 40(2):1306–1311.  https://doi.org/10.1039/c5nj02214b CrossRefGoogle Scholar
  83. 83.
    Lupan O, Postica V, Wolff N, Polonskyi O, Duppel V, Kaidas V, Lazari E, Ababii N, Faupel F, Kienle L, Adelung R (2017) Localized Synthesis of Iron Oxide Nanowires and Fabrication of High Performance Nanosensors Based on a Single Fe2O3 Nanowire. Small 13(16):1602868–1602n/a.  https://doi.org/10.1002/smll.201602868 CrossRefGoogle Scholar
  84. 84.
    Thirumalairajan S, Girija K, Mastelaro VR, Ponpandian N (2014) Surface Morphology-Dependent Room-Temperature LaFeO3 Nanostructure Thin Films as Selective NO2 Gas Sensor Prepared by Radio Frequency Magnetron Sputtering. ACS Appl Mater Interfaces 6(16):13917–13927.  https://doi.org/10.1021/am503318y CrossRefGoogle Scholar
  85. 85.
    Wu B, Wang L, Wu H, Kan K, Zhang G, Xie Y, Tian Y, Li L, Shi K (2016) Templated synthesis of 3D hierarchical porous Co3O4 materials and their NH3 sensor at room temperature. Microporous Mesoporous Mater 225:154–163.  https://doi.org/10.1016/j.micromeso.2015.12.019 CrossRefGoogle Scholar
  86. 86.
    Xue X, Xing L, Chen Y, Shi S, Wang Y, Wang T (2008) Synthesis and H2S Sensing Properties of CuO−SnO2 Core/Shell PN-Junction Nanorods. J Phys Chem C 112(32):12157–12160.  https://doi.org/10.1021/jp8037818 CrossRefGoogle Scholar
  87. 87.
    Bao M, Chen Y, Li F, Ma J, Lv T, Tang Y, Chen L, Xu Z, Wang T (2014) Plate-like p-n heterogeneous NiO/WO3 nanocomposites for high performance room temperature NO2 sensors. Nanoscale 6(8):4063–4066.  https://doi.org/10.1039/C3NR05268K CrossRefGoogle Scholar
  88. 88.
    Wang R, Yang S, Deng R, Chen W, Liu Y, Zhang H, Zakharova GS (2015) Enhanced gas sensing properties of V2O5 nanowires decorated with SnO2 nanoparticles to ethanol at room temperature. RSC Adv 5(51):41050–41058.  https://doi.org/10.1039/C5RA00530B CrossRefGoogle Scholar
  89. 89.
    Kim H-J, Lee J-H (2014) Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors Actuators B Chem 192:607–627.  https://doi.org/10.1016/j.snb.2013.11.005 CrossRefGoogle Scholar
  90. 90.
    Lee J-H (2009) Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sensors Actuators B Chem 140(1):319–336.  https://doi.org/10.1016/j.snb.2009.04.026 CrossRefGoogle Scholar
  91. 91.
    Sinha M, Mahapatra R, Mondal B, Maruyama T, Ghosh R (2016) Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique. J Phys Chem C 120(5):3019–3025.  https://doi.org/10.1021/acs.jpcc.5b11012 CrossRefGoogle Scholar
  92. 92.
    Tesfamichael T, Cetin C, Piloto C, Arita M, Bell J (2015) The effect of pressure and W-doping on the properties of ZnO thin films for NO2 gas sensing. Appl Surf Sci 357:728–734.  https://doi.org/10.1016/j.apsusc.2015.08.248 CrossRefGoogle Scholar
  93. 93.
    Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6(9):652–655 http://www.nature.com/nmat/journal/v6/n9/suppinfo/nmat1967_S1.html CrossRefGoogle Scholar
  94. 94.
    Yuan W, Shi G (2013) Graphene-based gas sensors. J Mater Chem A 1(35):10078–10091.  https://doi.org/10.1039/c3ta11774j CrossRefGoogle Scholar
  95. 95.
    Yoon HJ, Jun DH, Yang JH, Zhou Z, Yang SS, Cheng MM-C (2011) Carbon dioxide gas sensor using a graphene sheet. Sensors Actuators B Chem 157(1):310–313.  https://doi.org/10.1016/j.snb.2011.03.035 CrossRefGoogle Scholar
  96. 96.
    Ren Y, Zhu C, Cai W, Li H, Ji H, Kholmanov I, Wu Y, Piner RD, Ruoff RS (2012) Detection of sulfur dioxide gas with graphene field effect transistor. Appl Phys Lett 100(16):163114.  https://doi.org/10.1063/1.4704803 CrossRefGoogle Scholar
  97. 97.
    Kumar B, Min K, Bashirzadeh M, Farimani AB, Bae MH, Estrada D, Kim YD, Yasaei P, Park YD, Pop E, Aluru NR, Salehi-Khojin A (2013) The Role of External Defects in Chemical Sensing of Graphene Field-Effect Transistors. Nano Lett 13(5):1962–1968.  https://doi.org/10.1021/nl304734g CrossRefGoogle Scholar
  98. 98.
    Kang I-S, So H-M, Bang G-S, Kwak J-H, Lee J-O, Won Ahn C (2012) Recovery improvement of graphene-based gas sensors functionalized with nanoscale heterojunctions. Appl Phys Lett 101(12):123504.  https://doi.org/10.1063/1.4753974 CrossRefGoogle Scholar
  99. 99.
    Muhammad Hafiz S, Ritikos R, Whitcher TJ, Md Razib N, DCS B, Chanlek N, Nakajima H, Saisopa T, Songsiriritthigul P, Huang NM, Rahman SA (2014) A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide. Sensors Actuators B Chem 193(Supplement C):692–700.  https://doi.org/10.1016/j.snb.2013.12.017 CrossRefGoogle Scholar
  100. 100.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRefGoogle Scholar
  101. 101.
    Novoselov KS, Falko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490(7419):192–200CrossRefGoogle Scholar
  102. 102.
    Rigoni F, Maiti R, Baratto C, Donarelli M, MacLeod J, Gupta B, Lyu M, Ponzoni A, Sberveglieri G, Motta N, Faglia G (2017) Transfer of CVD-grown graphene for room temperature gas sensors. Nanotechnology 28(41):414001CrossRefGoogle Scholar
  103. 103.
    Sysoev VI, Bulusheva LG, Asanov IP, Shubin YV, Okotrub AV (2016) Thermally exfoliated fluorinated graphite for NO2 gas sensing. Phys Status Solidi B 253(12):2492–2498.  https://doi.org/10.1002/pssb.201600270 CrossRefGoogle Scholar
  104. 104.
    Bo Z, Shuai X, Mao S, Yang H, Qian J, Chen J, Yan J, Cen K (2014) Green preparation of reduced graphene oxide for sensing and energy storage applications. 4:4684.  https://doi.org/10.1038/srep04684. https://www.nature.com/articles/srep04684#supplementary-information
  105. 105.
    Tan C, Zhang H (2015) Epitaxial Growth of Hetero-Nanostructures Based on Ultrathin Two-Dimensional Nanosheets. J Am Chem Soc 137(38):12162–12174.  https://doi.org/10.1021/jacs.5b03590 CrossRefGoogle Scholar
  106. 106.
    Wang T, Huang D, Yang Z, Xu S, He G, Li X, Hu N, Yin G, He D, Zhang L (2016) A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications. Nano-Micro Lett 8(2):95–119.  https://doi.org/10.1007/s40820-015-0073-1 CrossRefGoogle Scholar
  107. 107.
    Strudwick AJ, Weber NE, Schwab MG, Kettner M, Weitz RT, Wünsch JR, Müllen K, Sachdev H (2015) Chemical Vapor Deposition of High Quality Graphene Films from Carbon Dioxide Atmospheres. ACS Nano 9(1):31–42.  https://doi.org/10.1021/nn504822m CrossRefGoogle Scholar
  108. 108.
    Yan K, Fu L, Peng H, Liu Z (2013) Designed CVD Growth of Graphene via Process Engineering. Acc Chem Res 46(10):2263–2274.  https://doi.org/10.1021/ar400057n CrossRefGoogle Scholar
  109. 109.
    Yavari F, Koratkar N (2012) Graphene-Based Chemical Sensors. J Phys Chem Lett 3(13):1746–1753.  https://doi.org/10.1021/jz300358t CrossRefGoogle Scholar
  110. 110.
    Lee S-K, Jang HY, Jang S, Choi E, Hong BH, Lee J, Park S, Ahn J-H (2012) All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Lett 12(7):3472–3476.  https://doi.org/10.1021/nl300948c CrossRefGoogle Scholar
  111. 111.
    Yan C, Cho JH, Ahn J-H (2012) Graphene-based flexible and stretchable thin film transistors. Nanoscale 4(16):4870–4882.  https://doi.org/10.1039/c2nr30994g CrossRefGoogle Scholar
  112. 112.
    Park SJ, Kwon OS, Lee SH, Song HS, Park TH, Jang J (2012) Ultrasensitive Flexible Graphene Based Field-Effect Transistor (FET)-Type Bioelectronic Nose. Nano Lett 12(10):5082–5090.  https://doi.org/10.1021/nl301714x CrossRefGoogle Scholar
  113. 113.
    Liu Y, Chang J, Lin L (2014) A flexible graphene FET gas sensor using polymer as gate dielectrics. Paper presented at the IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), San Francisco, CA, USAGoogle Scholar
  114. 114.
    Liu Y, Lin, S. and Lin, L. (2015) A versatile gas sensor with selectivity using a single graphene transistor. Paper presented at the 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)Google Scholar
  115. 115.
    Xia F, Mueller T, Golizadeh-Mojarad R, Freitag M, Lin Y-M, Tsang J, Perebeinos V, Avouris P (2009) Photocurrent Imaging and Efficient Photon Detection in a Graphene Transistor. Nano Lett 9(3):1039–1044.  https://doi.org/10.1021/nl8033812 CrossRefGoogle Scholar
  116. 116.
    Liu Y, Yu J, Cui Y, Hayasaka T, Liu H, Li X, Lin L (2017) An AC sensing scheme for minimal baseline drift and fast recovery on graphene FET gas sensor. Paper presented at the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)Google Scholar
  117. 117.
    Liu C, Kuang Q, Xie Z, Zheng L (2015) The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra. Cryst Eng Comm 17(33):6308–6313.  https://doi.org/10.1039/c5ce01162k CrossRefGoogle Scholar
  118. 118.
    Korotcenkov G (2013) Handbook of Gas Sensor Materials: Properties, Advantages and Shortcomings for Applications Volume 2: New Trends and Technologies. Springer, New YorkGoogle Scholar
  119. 119.
    Tricoli A (2012) Structural Stability and Performance of Noble Metal-Free SnO(2)-Based Gas Sensors. Bio Sensors 2(2):221–233.  https://doi.org/10.3390/bios2020221 Google Scholar
  120. 120.
    Latif U, Dickert FL (2015) Graphene Hybrid Materials in Gas Sensing Applications. Sensors (Basel, Switzerland) 15(12):30504–30524.  https://doi.org/10.3390/s151229814 CrossRefGoogle Scholar
  121. 121.
    Ganhua L, Leonidas EO, Junhong C (2009) Reduced graphene oxide for room-temperature gas sensors. Nanotechnology 20(44):445502CrossRefGoogle Scholar
  122. 122.
    Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK (2015) Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sensors Actuators B Chem 221(Supplement C):1170–1181.  https://doi.org/10.1016/j.snb.2015.07.070 CrossRefGoogle Scholar
  123. 123.
    Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sensors Actuators B Chem 219(Supplement C):94–99.  https://doi.org/10.1016/j.snb.2015.04.119 CrossRefGoogle Scholar
  124. 124.
    Enoch N, Rajesh N, Yuhua X, Yunxiang G, Mei Z, Liming D (2013) Sensor arrays from multicomponent micropatterned nanoparticles and graphene. Nanotechnology 24(44):444010CrossRefGoogle Scholar
  125. 125.
    Song Z, Wei Z, Wang B, Luo Z, Xu S, Zhang W, Yu H, Li M, Huang Z, Zang J, Yi F, Liu H (2016) Sensitive Room-Temperature H2S Gas Sensors Employing SnO2 Quantum Wire/Reduced Graphene Oxide Nanocomposites. Chem Mater 28(4):1205–1212.  https://doi.org/10.1021/acs.chemmater.5b04850 CrossRefGoogle Scholar
  126. 126.
    Ghosh R, Midya A, Santra S, Ray SK, Guha PK (2013) Chemically Reduced Graphene Oxide for Ammonia Detection at Room Temperature. ACS Appl Mater Interfaces 5(15):7599–7603.  https://doi.org/10.1021/am4019109 CrossRefGoogle Scholar
  127. 127.
    Kumar R, Avasthi DK, Kaur A (2017) Fabrication of chemiresistive gas sensors based on multistep reduced graphene oxide for low parts per million monitoring of sulfur dioxide at room temperature. Sensors Actuators B Chem 242:461–468.  https://doi.org/10.1016/j.snb.2016.11.018 CrossRefGoogle Scholar
  128. 128.
    Huang L, Wang Z, Zhang J, Pu J, Lin Y, Xu S, Shen L, Chen Q, Shi W (2014) Fully Printed, Rapid-Response Sensors Based on Chemically Modified Graphene for Detecting NO2 at Room Temperature. ACS Appl Mater Interfaces 6(10):7426–7433.  https://doi.org/10.1021/am500843p CrossRefGoogle Scholar
  129. 129.
    Zhang D, Liu A, Chang H, Xia B (2015) Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv 5(4):3016–3022.  https://doi.org/10.1039/c4ra10942b CrossRefGoogle Scholar
  130. 130.
    Acharyya D, Bhattacharyya P (2016) Highly Efficient Room-Temperature Gas Sensor Based on TiO<sub>2</sub> Nanotube-Reduced Graphene-Oxide Hybrid Device. IEEE Electron Device Letters 37(5):656–659.  https://doi.org/10.1109/led.2016.2544954 CrossRefGoogle Scholar
  131. 131.
    Zhang D, Liu J, Jiang C, Liu A, Xia B (2017) Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sensors Actuators B Chem 240:55–65.  https://doi.org/10.1016/j.snb.2016.08.085 CrossRefGoogle Scholar
  132. 132.
    Xia Y, Wang J, Xu J-L, Li X, Xie D, Xiang L, Komarneni S (2016) Confined Formation of Ultrathin ZnO Nanorods/Reduced Graphene Oxide Mesoporous Nanocomposites for High-Performance Room-Temperature NO2 Sensors. ACS Appl Mater Interfaces 8(51):35454–35463.  https://doi.org/10.1021/acsami.6b12501 CrossRefGoogle Scholar
  133. 133.
    Zhang D, Jiang C, Liu J, Cao Y (2017) Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sensors Actuators B Chem 247:875–882.  https://doi.org/10.1016/j.snb.2017.03.108 CrossRefGoogle Scholar
  134. 134.
    Su P-G, Peng S-L (2015) Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films. Talanta 132:398–405.  https://doi.org/10.1016/j.talanta.2014.09.034 CrossRefGoogle Scholar
  135. 135.
    Chen N, Li X, Wang X, Yu J, Wang J, Tang Z, Akbar SA (2013) Enhanced room temperature sensing of Co3O4-intercalated reduced graphene oxide based gas sensors. Sensors Actuators B Chem 188:902–908.  https://doi.org/10.1016/j.snb.2013.08.004 CrossRefGoogle Scholar
  136. 136.
    Zhang J, Zeng D, Zhao S, Wu J, Xu K, Zhu Q, Zhang G, Xie C (2015) Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO? Phys Chem Chem Phys 17(22):14903–14911.  https://doi.org/10.1039/C5CP01987G CrossRefGoogle Scholar
  137. 137.
    Gu F, Nie R, Han D, Wang Z (2015) In2O3–graphene nanocomposite based gas sensor for selective detection of NO2 at room temperature. Sensors Actuators B Chem 219:94–99.  https://doi.org/10.1016/j.snb.2015.04.119 CrossRefGoogle Scholar
  138. 138.
    Tan TL, Ng M-F, Eda G (2016) Stable Monolayer Transition Metal Dichalcogenide Ordered Alloys with Tunable Electronic Properties. J Phys Chem C 120(5):2501–2508.  https://doi.org/10.1021/acs.jpcc.5b10739 CrossRefGoogle Scholar
  139. 139.
    Jeong H, Oh HM, Gokarna A, Kim H, Yun SJ, Han GH, Jeong MS, Lee YH, Lerondel G (2017) Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides. Adv Mater 29(18):1700308–1700n/a.  https://doi.org/10.1002/adma.201700308 CrossRefGoogle Scholar
  140. 140.
    Chhowalla M, Liu Z, Zhang H (2015) Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem Soc Rev 44(9):2584–2586.  https://doi.org/10.1039/c5cs90037a CrossRefGoogle Scholar
  141. 141.
    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev OV, Kis A (2017) 2D transition metal dichalcogenides. 2:17033.  https://doi.org/10.1038/natrevmats.2017.33
  142. 142.
    Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper VR, Liang L, Louie SG, Ringe E, Zhou W, Kim SS, Naik RR, Sumpter BG, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller JA, Schaak RE, Terrones M, Robinson JA (2015) Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano 9(12):11509–11539.  https://doi.org/10.1021/acsnano.5b05556 CrossRefGoogle Scholar
  143. 143.
    Mak KF, Shan J (2016) Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon 10(4):216–226.  https://doi.org/10.1038/nphoton.2015.282 CrossRefGoogle Scholar
  144. 144.
    Susarla S, Kutana A, Hachtel JA, Kochat V, Apte A, Vajtai R, Idrobo JC, Yakobson BI, Tiwary CS, Ajayan PM (2017) Quaternary 2D Transition Metal Dichalcogenides (TMDs) with Tunable Bandgap. Adv Mater 29(35):1702457–1702n/a.  https://doi.org/10.1002/adma.201702457 CrossRefGoogle Scholar
  145. 145.
    Velusamy DB, Kim RH, Cha S, Huh J, Khazaeinezhad R, Kassani SH, Song G, Cho SM, Cho SH, Hwang I, Lee J, Oh K, Choi H, Park C (2015) Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. 6:8063.  https://doi.org/10.1038/ncomms9063. https://www.nature.com/articles/ncomms9063#supplementary-information
  146. 146.
    Perkins FK, Friedman AL, Cobas E, Campbell PM, Jernigan GG, Jonker BT (2013) Chemical Vapor Sensing with Monolayer MoS2. Nano Lett 13(2):668–673.  https://doi.org/10.1021/nl3043079 CrossRefGoogle Scholar
  147. 147.
    Liu B, Chen L, Liu G, Abbas AN, Fathi M, Zhou C (2014) High-Performance Chemical Sensing Using Schottky-Contacted Chemical Vapor Deposition Grown Monolayer MoS2 Transistors. ACS Nano 8(5):5304–5314.  https://doi.org/10.1021/nn5015215 CrossRefGoogle Scholar
  148. 148.
    Nam H, Oh B-R, Chen P, Chen M, Wi S, Wan W, Kurabayashi K, Liang X (2015) Multiple MoS2 Transistors for Sensing Molecule Interaction Kinetics. 5:10546.  https://doi.org/10.1038/srep10546. https://www.nature.com/articles/srep10546#supplementary-information
  149. 149.
    Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee Y-J, Park S-G, Kwon J-D, Kim CS, Song M, Jeong Y, Nam K-S, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim D-H (2015) Charge-transfer-based Gas Sensing Using Atomic-layer MoS2. 5:8052.  https://doi.org/10.1038/srep08052. https://www.nature.com/articles/srep08052#supplementary-information
  150. 150.
    Bergeron H, Sangwan VK, McMorrow JJ, Campbell GP, Balla I, Liu X, Bedzyk MJ, Marks TJ, Hersam MC (2017) Chemical vapor deposition of monolayer MoS2 directly on ultrathin Al2O3 for low-power electronics. Appl Phys Lett 110(5):053101.  https://doi.org/10.1063/1.4975064 CrossRefGoogle Scholar
  151. 151.
    Tao H, Zhang Y, Gao Y, Sun Z, Yan C, Texter J (2017) Scalable exfoliation and dispersion of two-dimensional materials - an update. Phys Chem Chem Phys 19(2):921–960.  https://doi.org/10.1039/c6cp06813h CrossRefGoogle Scholar
  152. 152.
    Kim HT, Kim HY, Park YS, Kim YS, Jang WH (2017) Two-Dimensional Transition Metal Disulfides for Chemoresistive Gas Sensing: Perspective and Challenges. Chemosensors 5(2).  https://doi.org/10.3390/chemosensors5020015
  153. 153.
    Cho B, Kim AR, Park Y, Yoon J, Lee Y-J, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Kim D-H, Hahm MG (2015) Bifunctional Sensing Characteristics of Chemical Vapor Deposition Synthesized Atomic-Layered MoS2. ACS Appl Mater Interfaces 7(4):2952–2959.  https://doi.org/10.1021/am508535x CrossRefGoogle Scholar
  154. 154.
    Lee K, Gatensby R, McEvoy N, Hallam T, Duesberg GS (2013) High-Performance Sensors Based on Molybdenum Disulfide Thin Films. Adv Mater 25(46):6699–6702.  https://doi.org/10.1002/adma.201303230 CrossRefGoogle Scholar
  155. 155.
    Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee Y-J, Park S-G, Kwon J-D, Kim CS, Song M, Jeong Y, Nam K-S, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim D-H (2015) Charge-transfer-based Gas Sensing Using Atomic-layer MoS(2). Sci Reports 5:8052.  https://doi.org/10.1038/srep08052 CrossRefGoogle Scholar
  156. 156.
    Baek J, Yin D, Liu N, Omkaram I, Jung C, Im H, Hong S, Kim SM, Hong YK, Hur J, Yoon Y, Kim S (2017) A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res 10(6):1861–1871.  https://doi.org/10.1007/s12274-016-1291-7 CrossRefGoogle Scholar
  157. 157.
    Ko KY, Song J-G, Kim Y, Choi T, Shin S, Lee CW, Lee K, Koo J, Lee H, Kim J, Lee T, Park J, Kim H (2016) Improvement of Gas-Sensing Performance of Large-Area Tungsten Disulfide Nanosheets by Surface Functionalization. ACS Nano 10(10):9287–9296.  https://doi.org/10.1021/acsnano.6b03631 CrossRefGoogle Scholar
  158. 158.
    Cihan K, Duyoung C, Alireza K, Chin Hung L, Serdar Y, Chulmin C, Sungho J, Prabhakar RB (2016) High-performance flexible hydrogen sensor made of WS 2 nanosheet–Pd nanoparticle composite film. Nanotechnol 27(19):195501CrossRefGoogle Scholar
  159. 159.
    Ou JZ, Ge W, Carey B, Daeneke T, Rotbart A, Shan W, Wang Y, Fu Z, Chrimes AF, Wlodarski W, Russo SP, Li YX, Kalantar-zadeh K (2015) Physisorption-Based Charge Transfer in Two-Dimensional SnS2 for Selective and Reversible NO2 Gas Sensing. ACS Nano 9(10):10313–10323.  https://doi.org/10.1021/acsnano.5b04343 CrossRefGoogle Scholar
  160. 160.
    Zhang D, Wu J, Li P, Cao Y (2017) Room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J Mater Chem A 5(39):20666–20677.  https://doi.org/10.1039/c7ta07001b CrossRefGoogle Scholar
  161. 161.
    Qin Z, Ouyang C, Zhang J, Wan L, Wang S, Xie C, Zeng D (2017) 2D WS2 nanosheets with TiO2 quantum dots decoration for high-performance ammonia gas sensing at room temperature. Sensors Actuators B Chem 253(Supplement C):1034–1042.  https://doi.org/10.1016/j.snb.2017.07.052 CrossRefGoogle Scholar
  162. 162.
    Zhang D, Jiang C, Sun Ye (2017) Room-temperature high-performance ammonia gas sensor based on layer-by-layer self-assembled molybdenum disulfide/zinc oxide nanocomposite film. J Alloys Compd 698:476-483.  https://doi.org/10.1016/j.jallcom.2016.12.222
  163. 163.
    Cui S, Wen Z, Huang X, Chang J, Chen J (2015) Stabilizing MoS2 Nanosheets through SnO2 Nanocrystal Decoration for High-Performance Gas Sensing in Air. Small 11(19):2305–2313.  https://doi.org/10.1002/smll.201402923 CrossRefGoogle Scholar
  164. 164.
    Li X, Wang J, Xie D, Xu J, Xia Y, Xiang L, Komarneni S (2017) Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater Lett 189:42–45.  https://doi.org/10.1016/j.matlet.2016.11.046 CrossRefGoogle Scholar
  165. 165.
    Li X, Li X, Li Z, Wang J, Zhang J (2017) WS2 nanoflakes based selective ammonia sensors at room temperature. Sensors Actuators B Chem 240:273–277.  https://doi.org/10.1016/j.snb.2016.08.163 CrossRefGoogle Scholar
  166. 166.
    Weidong S, Lihua H, Haishui W, Hongjie Z, Jianhui Y, Pinghui W (2006) Hydrothermal growth and gas sensing property of flower-shaped SnS2 nanostructures. Nanotechnol 17(12):2918CrossRefGoogle Scholar
  167. 167.
    Late DJ, Doneux T, Bougouma M (2014) Single-layer MoSe2 based NH3 gas sensor. Appl Phys Lett 105(23):233103.  https://doi.org/10.1063/1.4903358 CrossRefGoogle Scholar
  168. 168.
    Liu H, Liu Y, Chu Y, Hayasaka T, Joshi N, Cui Y, Wang X, You Z, Lin LAC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift. Sensors Actuators B Chem.  https://doi.org/10.1016/j.snb.2018.01.244
  169. 169.
    Chang Y, Tang N, Qu H, Liu J, Zhang D, Zhang H, Pang W, Duan X (2016) Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints. Sci Report 6:23970.  https://doi.org/10.1038/srep23970 https://www.nature.com/articles/srep23970#supplementary-information CrossRefGoogle Scholar
  170. 170.
    Kahn N, Lavie O, Paz M, Segev Y, Haick H (2015) Dynamic Nanoparticle-Based Flexible Sensors: Diagnosis of Ovarian Carcinoma from Exhaled Breath. Nano Lett 15(10):7023–7028.  https://doi.org/10.1021/acs.nanolett.5b03052 CrossRefGoogle Scholar
  171. 171.
    Liu Y (2017) Room Temperature Gas Sensing using Graphene FET. Dissertation. University of California, BerkeleyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.São Carlos Institute of PhysicsUniversity of São PauloSão PauloBrazil
  3. 3.Tsinghua-Berkeley Shenzhen InstituteShenzhenChina

Personalised recommendations