Advertisement

Microchimica Acta

, 185:217 | Cite as

Voltammetric determination of the Escherichia coli DNA using a screen-printed carbon electrode modified with polyaniline and gold nanoparticles

  • Nahid Shoaie
  • Mehdi Forouzandeh
  • Kobra Omidfar
Original Paper

Abstract

The authors describe an electrochemical assay for fast detection of Escherichia coli (E. coli). It is based on a dual signal amplification strategy and the use of a screen-printed carbon electrode (SPCE) whose surface was modified with a polyaniline (PANI) film and gold nanoparticles (AuNPs) via cyclic voltammetry (CV). In the next step, avidin was covalently immobilized on the PANI/AuNP composite on the SPCE surface. Subsequently, the biotinylated DNA capture probe was immobilized onto the PANI/AuNP/avidin-modified SPCE by biotin-avidin interaction. Then, DNA of E.coli, digoxigenin-labeled DNA detector probe and anti-digoxigenin-labeled horseradish peroxidase (HRP) were placed on the electrode. 3,3′,5,5′-Tetramethylbenzidine (TMB) and H2O2 solution were added and the CV electrochemical signal was generated at a potential of −0.1 V (vs. Ag/AgCl) and a scan rate 50 mV.s−1. The assay can detect 4 × 106 to 4 CFU of E. coli without DNA amplification. The biosensor is highly specific over other pathogens including Klebsiella pneumoniae, Proteus mirabilis, Enterococcus faecalis, Staphylococcus haemolyticus and Pseudomonas aeruginosa. It can be concluded that this genosensor has an excellent potential for rapid and accurate diagnosis of E.coli inflicted infections.

Graphical Abstract

Schematic of an electrochemical E. coli genosensor based on sandwich assay on a polyaniline/gold nanoparticle-modified screen printed carbon electrode (SPCE). The biosensor can detect 4 × 106 to 4 CFU of E. coli without DNA amplification.

Keywords

Infectious diseases Cyclic voltammetry Screen-printed carbon electrode Capture probe Digoxigenin-labeled detector probe 

Notes

Acknowledgements

This research was supported by a grant from Tarbiat Modares University.

Compliance with ethical standards

The author(s) declare that they have no competing interests.

Supplementary material

604_2018_2749_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1639 kb)

References

  1. 1.
    Allocati N, Masulli M, Alexeyev MF, Di Ilio C (2013) Escherichia coli in Europe: an overview. Int J Environ Res Public Health 10(12):6235–6254CrossRefGoogle Scholar
  2. 2.
    Tang H, Zhang W, Geng P, Wang Q, Jin L, Wu Z, Lou M (2006) A new amperometric method for rapid detection of Escherichia coli density using a self-assembled monolayer-based bienzyme biosensor. Anal Chim Acta 562(2):190–196CrossRefGoogle Scholar
  3. 3.
    Li K, Lai Y, Zhang W, Jin L (2011) Fe 2 O 3@ Au core/shell nanoparticle-based electrochemical DNA biosensor for Escherichia coli detection. Talanta 84(3):607–613CrossRefGoogle Scholar
  4. 4.
    Foxman B (2002) Epidemiology of urinary tract infections: incidence, morbidity, and economic costs. Am J Med 113(1):5–13CrossRefGoogle Scholar
  5. 5.
    Ejrnæs K (2011) Bacterial characteristics of importance for recurrent urinary tract infections caused by Escherichia coli. Dan Med Bull 58(4):B4187Google Scholar
  6. 6.
    Mach KE, Wong PK, Liao JC (2011) Biosensor diagnosis of urinary tract infections: a path to better treatment? Trends Pharmacol Sci 32(6):330–336CrossRefGoogle Scholar
  7. 7.
    Kumar M, Ghosh S, Nayak S, Das A (2016) Recent advances in biosensor based diagnosis of urinary tract infection. Biosens Bioelectron 80:497–510CrossRefGoogle Scholar
  8. 8.
    Chen Y, Li Y, Yang Y, Wu F, Cao J, Bai L (2017) A polyaniline-reduced graphene oxide nanocomposite as a redox nanoprobe in a voltammetric DNA biosensor for Mycobacterium tuberculosis. Microchim Acta 184(6):1801–1808CrossRefGoogle Scholar
  9. 9.
    Setterington EB, Alocilja EC (2012) Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors 2(1):15–31CrossRefGoogle Scholar
  10. 10.
    Azimzadeh M, Rahaie M, Nasirizadeh N, Daneshpour M, Naderi-Manesh H (2017) Electrochemical miRNA biosensors: the benefits of nanotechnology. Nanomedicine Res J 2(1):36–48Google Scholar
  11. 11.
    Kurundu Hewage EM, Spear D, Umstead TM, Hu S, Wang M, Wong PK, Chroneos ZC, Halstead ES, Thomas NJ (2017) An electrochemical biosensor for rapid detection of pediatric bloodstream infections. SLAS Technology (Translating Life Sciences Innovation) 22(6):616–625CrossRefGoogle Scholar
  12. 12.
    Ma X, Jiang Y, Jia F, Yu Y, Chen J, Wang Z (2014) An aptamer-based electrochemical biosensor for the detection of Salmonella. J Microbiol Methods 98:94–98CrossRefGoogle Scholar
  13. 13.
    Dhand C, Das M, Datta M, Malhotra B (2011) Recent advances in polyaniline based biosensors. Biosens Bioelectron 26(6):2811–2821CrossRefGoogle Scholar
  14. 14.
    Daneshpour M, Izadi P, Omidfar K (2016) Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode. Biosens Bioelectron 77:1095–1103CrossRefGoogle Scholar
  15. 15.
    Saberi RS, Shahrokhian S, Marrazza G (2013) Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles. Electroanalysis 25(6):1373–1380CrossRefGoogle Scholar
  16. 16.
    Liu C, Jiang D, Xiang G, Liu L, Liu F, Pu X (2014) An electrochemical DNA biosensor for the detection of Mycobacterium tuberculosis, based on signal amplification of graphene and a gold nanoparticle–polyaniline nanocomposite. Analyst 139(21):5460–5465CrossRefGoogle Scholar
  17. 17.
    Liao JC, Mastali M, Gau V, Suchard MA, Møller AK, Bruckner DA, Babbitt JT, Li Y, Gornbein J, Landaw EM (2006) Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 44(2):561–570CrossRefGoogle Scholar
  18. 18.
    Singh R, Verma R, Sumana G, Srivastava AK, Sood S, Gupta RK, Malhotra B (2012) Nanobiocomposite platform based on polyaniline-iron oxide-carbon nanotubes for bacterial detection. Bio Electro Chem 86:30–37Google Scholar
  19. 19.
    Paniel N, Baudart J (2013) Colorimetric and electrochemical genosensors for the detection of Escherichia coli DNA without amplification in seawater. Talanta 115:133–142CrossRefGoogle Scholar
  20. 20.
    Heurich M, Kadir MKA, Tothill IE (2011) An electrochemical sensor based on carboxymethylated dextran modified gold surface for ochratoxin A analysis. Sensors Actuators B Chem 156(1):162–168CrossRefGoogle Scholar
  21. 21.
    Arshak K, Velusamy V, Korostynska O, Oliwa-Stasiak K, Adley C (2009) Conducting polymers and their applications to biosensors: emphasizing on foodborne pathogen detection. IEEE Sensors J 9(12):1942–1951CrossRefGoogle Scholar
  22. 22.
    Xu Q, Leng J, H-b L, Lu G-j, Wang Y, Hu X-Y (2010) The preparation of polyaniline/gold nanocomposites by self-assembly and their electrochemical applications. React Funct Polym 70(9):663–668CrossRefGoogle Scholar
  23. 23.
    Zhu C, Yang G, Li H, Du D, Lin Y (2014) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249CrossRefGoogle Scholar
  24. 24.
    Syedmoradi L, Daneshpour M, Alvandipour M, Gomez FA, Hajghassem H, Omidfar K (2017) Point of care testing: the impact of nanotechnology. Biosens Bioelectron 87:373–387CrossRefGoogle Scholar
  25. 25.
    Monošík R, Streďanský M, Šturdík E (2012) Biosensors-classification, characterization and new trends. Acta Chim Slov 5(1):109–120Google Scholar
  26. 26.
    Williams E, Pividori M, Merkoci A, Forster R, Alegret S (2003) Rapid electrochemical genosensor assay using a streptavidin carbon-polymer biocomposite electrode. Biosens Bioelectron 19(3):165–175CrossRefGoogle Scholar
  27. 27.
    Prince S (2015) Characterization of electrodeposited polyaniline biosensor platform for Escherichia coli O157: H7 detection. M.S. thesis, Department of electrical and computer engineering of the college of engineering. Michigan Technological UniversityGoogle Scholar
  28. 28.
    Lee AC, Liu G, Heng CK, Tan SN, Lim TM, Lin Y (2008) Sensitive electrochemical detection of horseradish peroxidase at disposable screen-printed carbon electrode. Electroanalysis 20(18):2040–2046CrossRefGoogle Scholar
  29. 29.
    Saleh Ahammad A (2013) Hydrogen peroxide biosensors based on horseradish peroxidase and hemoglobin. The Journal of Biosensors and Bioelectronics (JBSBE) 9:2Google Scholar
  30. 30.
    Daneshpour M, Omidfar K, Ghanbarian H (2016) A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a. Beilstein J Nanotechnol 7:2023CrossRefGoogle Scholar
  31. 31.
    Fengqin Li ZY, Haichao Q, Zhang G, Yan H, Liu X, He X (2015) A highlysensitiveandspecific electrochemicalsensingmethod for robustdetectionof Escherichiacolilac Z genesequence. Biosens Bioelectron 68:78–82CrossRefGoogle Scholar
  32. 32.
    Xu S, Zhang Y, Dong K, Wen J, Zheng C, Zhao S (2017) Electrochemical DNA biosensor based on graphene oxide-chitosan hybrid nanocomposites for detection of Escherichia coli O157: H7. Int J Electrochem Sci 12:3443–3458CrossRefGoogle Scholar
  33. 33.
    Hassan A-RHA-A, de la Escosura-Muñiz A, Merkoçi A (2015) Highly sensitive and rapid determination of Escherichia coli O157: H7 in minced beef and water using electrocatalytic gold nanoparticle tags. Biosens Bioelectron 67:511–515CrossRefGoogle Scholar
  34. 34.
    Luo C, Lei Y, Yan L, Yu T, Li Q, Zhang D, Ding S, Ju H (2012) A rapid and sensitive aptamer-based electrochemical biosensor for direct detection of Escherichia coli O111. Electroanalysis 24(5):1186–1191CrossRefGoogle Scholar
  35. 35.
    Zhang W, Luo C, Zhong L, Nie S, Cheng W, Zhao D, Ding S (2013) Sensitive detection of enteropathogenic E. coli using a bfpA gene-based electrochemical sensor. Microchim Acta 180(13–14):1233–1240CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Nahid Shoaie
    • 1
  • Mehdi Forouzandeh
    • 1
    • 2
  • Kobra Omidfar
    • 2
    • 3
  1. 1.Department of Medical Biotechnology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
  2. 2.Biosensor Research CenterEndocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical ScienceTehranIran
  3. 3.Endocrinology and Metabolism Research CenterEndocrinology and Metabolism Research Institute, Tehran University of Medical SciencesTehranIran

Personalised recommendations