Skip to main content
Log in

A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive immunosensor for the direct detection of the illegally used livestock feed clebuterol (CLB) is described. It is based on the use of a glassy carbon electrode modified with an MoS2-AuPt nanocomposite and on biotin-streptavidin interaction. The use of MoS2-AuPt accelerates electron transfer, and this leads to a sharp increase in the electrochemical signal for the electrochemical probe hydrogen peroxide. Differential pulse voltammetry was used to record the current signal at a peak potential of −0.18 V (vs SCE). Under optimal conditions, the electrode has a linear response in the 10 pg·mL−1 to 100 ng·mL−1 CLB concentration range and a 6.9 pg·mL−1 detection limit (based on the 3σ criterium). This immunosensor is sensitive, highly specific and acceptably reproducible, and thus represents a valuable tool for the determination of CLB in pork.

Schematic of a voltammetric immunosensor for the determination of clenbuterol (CLB) based on the use of a nanocomposite prepared from molybdenum disulfide and a gold-platinum alloy (MoS2-AuPt), and making use of the biotin-streptavidin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu Y, Lu Q, Hu X, Wang H, Li H, Zhang Y, Yao S (2017) A Nanosensor based on carbon dots for recovered fluorescence detection Clenbuterol in pork samples. J Fluoresc 27(5):1847–1853

    Article  CAS  Google Scholar 

  2. Lv CZ, Xun Y, Cao Z, Xie JL, Li D, Liu G, Yu L, Feng ZM, Yin YL, Tan SZ (2017) Sensitive determination of toxic Clenbuterol in pig meat and pig liver based on a carbon nanopolymer composite. Food Anal Methods 10(7):1–10

    Article  Google Scholar 

  3. Li Y, Qi P, Ma X, Zhong J (2014) Quick detection technique for clenbuterol hydrochloride by using surface plasmon resonance biosensor. Eur Food Res Technol 239(2):195–201

    Article  CAS  Google Scholar 

  4. Yan F, Zhang Y, Zhang S, Zhao J, Liu S, He L, Feng X, Zhang H, Zhang Z (2015) Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Microchim Acta 182(3–4):855–862

    Article  CAS  Google Scholar 

  5. Yang Y, Zhang H, Huang C, Yang D, Jia N (2016) Electrochemical non-enzyme sensor for detecting clenbuterol (CLB) based on MoS 2 -Au-PEI-hemin layered nanocomposite. Biosens Bioelectron 89(Pt 1):461

    Google Scholar 

  6. Chen XB, Wu YL, Yang T (2011) Simultaneous determination of clenbuterol, chloramphenicol and diethylstilbestrol in bovine milk by isotope dilution ultraperformance liquid chromatography-tandem mass spectrometry. J Instrum Anal 879(11):799–803

    CAS  Google Scholar 

  7. He L, Su Y, Zeng Z, Liu Y, Huang X (2007) Determination of ractopamine and clenbuterol in feeds by gas chromatography-mass spectrometry. Anim Feed Sci Technol 132(3–4):316–323

    Article  CAS  Google Scholar 

  8. Liu B, Yan H, Qiao F, Geng Y (2011) Determination of clenbuterol in porcine tissues using solid-phase extraction combined with ultrasound-assisted dispersive liquid-liquid microextraction and HPLC-UV detection. J Chromatogr B Anal Technol Biomed Life Sci 879(1):90

    Article  CAS  Google Scholar 

  9. Shelver WL, Smith DJ (2004) Enzyme-linked immunosorbent assay development for the beta-adrenergic agonist zilpaterol. J Agric Food Chem 52(8):2159–2166

    Article  CAS  Google Scholar 

  10. Liu Q, Yang Y, Hui L, Zhu R, Qian S, Yang S, Xu J (2015) NiO nanoparticles modified with 5,10,15,20-tetrakis(4-carboxyl pheyl)-porphyrin: promising peroxidase mimetics for H 2 O 2 and glucose detection. Biosens Bioelectron 64:147–153

    Article  CAS  Google Scholar 

  11. Liu Q, Yang Y, Lv X, Ding Y, Zhang Y, Jing J, Xu C (2016) One-step synthesis of uniform nanoparticles of porphyrin functionalized ceria with promising peroxidase mimetics for H 2 O 2 and glucose colorimetric detection. Sensors Actuators B Chem 240:726–734

    Article  Google Scholar 

  12. Liu Q, Chen P, Xu Z, Chen M, Ding Y, Yue K, Xu J (2017) A facile strategy to prepare porphyrin functionalized ZnS nanoparticles and their peroxidase-like catalytic activity for colorimetric sensor of hydrogen peroxide and glucose. Sensors Actuators B Chem 251:339–348

    Article  CAS  Google Scholar 

  13. Ji H, Yan F, Lei J, Ju H (2012) Ultrasensitive electrochemical detection of nucleic acids by template enhanced hybridization followed with rolling circle amplification. Anal Chem 84(16):7166–7171

    Article  CAS  Google Scholar 

  14. Jin H, Yanrong W, Yan C, Zhi Z, Xiaohai Y, Chaoyong James Y, Kemin W, Weihong T (2011) Pyrene-excimer probes based on the hybridization chain reaction for the detection of nucleic acids in complex biological fluids. Angew Chem Int Ed 50(2):401

    Article  Google Scholar 

  15. Lee JU, Jeong JH, Lee DS, Sim SJ (2014) Signal enhancement strategy for a micro-arrayed polydiacetylene (PDA) immunosensor using enzyme-catalyzed precipitation. Biosens Bioelectron 61(6):314–320

    Article  CAS  Google Scholar 

  16. Yan M, Bai W, Chao Z, Huang Y, Jiao Y, Chen A (2015) Design of nuclease-based target recycling signal amplification in aptasensors. Biosens Bioelectron 77:613

    Article  Google Scholar 

  17. Tang D, Su B, Tang J, Ren J, Chen G (2010) Nanoparticle-based sandwich electrochemical immunoassay for carbohydrate antigen 125 with signal enhancement using enzyme-coated nanometer-sized enzyme-doped silica beads. Anal Chem 82(4):1527–1534

    Article  CAS  Google Scholar 

  18. Li Y, Lin H, Peng H, Qi R, Luo C (2016) A glassy carbon electrode modified with MoS 2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchim Acta 183(9):1–7

    Article  Google Scholar 

  19. Cao X, Wang N, Jia S, Guo L, Li K (2013) Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens Bioelectron 39(1):226–230

    Article  CAS  Google Scholar 

  20. Shi H, Zhang Z, Wang Y, Zhu Q, Song W (2011) Bimetallic nano-structured glucose sensing electrode composed of copper atoms deposited on gold nanoparticles. Microchim Acta 173(1–2):85–94

    Article  CAS  Google Scholar 

  21. Zhou H, Liu Q, Liu W, Ge J, Lan M, Wang C, Geng J, Wang P (2014) Template-Free Preparation of Volvox-like CdxZn1−xS Nanospheres with Cubic Phase for Efficient Photocatalytic Hydrogen Production. Chem Asian J 9(3):811–818

    Article  CAS  Google Scholar 

  22. Wang X, Nan F, Zhao J, Yang T, Ge T, Jiao K (2015) A label-free ultrasensitive electrochemical DNA sensor based on thin-layer MoS2 nanosheets with high electrochemical activity. Biosens Bioelectron 64:386–391

    Article  CAS  Google Scholar 

  23. Zhu L, Zhang Y, Xu P, Wen W, Li X, Xu J (2016) PtW/MoS2 hybrid nanocomposite for electrochemical sensing of H2O2 released from living cells. Biosens Bioelectron 80:601–606

    Article  CAS  Google Scholar 

  24. Pan N, Wang LY, Wu LL, Peng CF, Xie ZJ (2017) Colorimetric determination of cysteine by exploiting its inhibitory action on the peroxidase-like activity of Au@Pt core-shell nanohybrids. Microchim Acta 184(1):65–72

    Article  CAS  Google Scholar 

  25. Ding Y, Yang B, Liu H, Liu Z, Zhang X, Zheng X, Liu Q (2018) FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sensors Actuators B Chem 259:775–783. https://doi.org/10.1016/j.snb.2017.12.115

    Article  CAS  Google Scholar 

  26. Chen J, Yu C, Zhao Y, Niu Y, Zhang L, Yu Y, Wu J, He J (2017) A novel non-invasive detection method for the FGFR3 gene mutation in maternal plasma for a fetal achondroplasia diagnosis based on signal amplification by hemin-MOFs/PtNPs. Biosens Bioelectron 91:892–899

    Article  CAS  Google Scholar 

  27. Jiang X, Chen K, Han H (2011) Ultrasensitive electrochemical detection of Bacillus thuringiensis transgenic sequence based on in situ Ag nanoparticles aggregates induced by biotin-streptavidin system. Biosens Bioelectron 28(1):464–468

    Article  CAS  Google Scholar 

  28. Zhu Q, Chai Y, Zhuo Y, Yuan R (2015) Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin-streptavidin signal amplification strategy. Biosens Bioelectron 68(68):42–48

    Article  CAS  Google Scholar 

  29. Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A (2016) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184(1):1–7

    Article  Google Scholar 

  30. Chen B, Wang L, Gao S (2016) Development of a disposable label-free impedance Immunosensor for direct and sensitive Clenbuterol determination in pork. Food Anal Methods 9(6):1781–1788

    Article  Google Scholar 

  31. Gan X, Zhao H, Quan X (2017) Two-dimensional MoS2: A promising building block for biosensors. Biosens Bioelectron 89(Pt 1):56

    Article  CAS  Google Scholar 

  32. Liu N, Nie D, Tan Y, Zhao Z, Liao Y, Wang H, Sun C, Wu A (2017) An ultrasensitive amperometric immunosensor for zearalenones based on oriented antibody immobilization on a glassy carbon electrode modified with MWCNTs and AuPt nanoparticles. Microchim Acta 184(1):1–7

    Article  Google Scholar 

  33. Chen Q, Yu C, Gao R, Gao L, Li Q, Yuan G, He J (2016) A novel electrochemical immunosensor based on the rGO-TEPA-PTC-NH2 and AuPt modified C60 bimetallic nanoclusters for the detection of Vangl1, a potential biomarker for dysontogenesis. Biosens Bioelectron 79:364–370

    Article  CAS  Google Scholar 

  34. Yang T, Chen M, Kong Q, Luo X, Jiao K (2016) Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosens Bioelectron 89(Pt 1):538–544

    Google Scholar 

  35. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z (2012) Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 34(1):112–117

    Article  CAS  Google Scholar 

  36. Liu G, Chen H, Peng H, Song S, Gao J, Lu J, Ding M, Li L, Ren S, Zou Z (2011) A carbon nanotube-based high-sensitivity electrochemical immunosensor for rapid and portable detection of clenbuterol. Biosens Bioelectron 28(1):308–313

    Article  CAS  Google Scholar 

  37. Zhang Z, Duan F, He L, Peng D, Yan F, Wang M, Zong W, Jia C (2016) Electrochemical clenbuterol immunosensor based on a gold electrode modified with zinc sulfide quantum dots and polyaniline. Microchim Acta 183(3):1089–1097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. 31071093, 31170129, and 31200064) and the Science and Technology Planning Project of Yuzhong District of Chongqing City, China (No. 20140119).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Fu Qiu or Chao Rui Li.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 2558 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, R., Chen, S., Xu, W. et al. A voltammetric immunosensor for clenbuterol based on the use of a MoS2-AuPt nanocomposite. Microchim Acta 185, 209 (2018). https://doi.org/10.1007/s00604-018-2746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2746-1

Keywords

Navigation