Microchimica Acta

, 185:211 | Cite as

An “off-on” colorimetric and fluorometric assay for Cu(II) based on the use of NaYF4:Yb(III),Er(III) upconversion nanoparticles functionalized with branched polyethylenimine

  • Hong Shao
  • Dan Xu
  • Yadan Ding
  • Xia Hong
  • Yichun Liu
Original Paper


The authors describe an “off-on” colorimetric and fluorometric assay for the determination of Cu(II). It is based on the use of upconversion nanoparticles (UCNPs) of type NaYF4:Yb(III),Er(III) that were functionalized with branched polyethylenimine (BPEI). A color change from colorless to blue occurs within 2 s after addition of Cu(II) to a solution of the modified UCNPs. The color change can be visually detected at Cu(II) concentrations down to 80 μM. The upconversion fluorescence of the modified UCNPs, measured at excitation wavelength of 980 nm, is reduced due to the predominant inner filter effect caused by the formation of the BPEI-Cu(II) complex. Normalized fluorescence intensity drops linearly in the 50 nM to 10 μM Cu(II) concentration range, and the fluorometric detection limit is 45 nM. Both the color and the fluorescence are recovered on addition of EDTA. Excellent selectivity over other metal ions and anions is achieved.

Graphical abstract

Upconversion nanoparticles of type NaYF4:Yb,Er were functionalized with branched polyethylenimine (UCNP/BPEI) and used in an “off-on” colorimetric and fluorometric assay for Cu(II). The upconversion fluorescence is selectively quenched on addition of Cu(II), and this is accompanied by a rapid colorless-to-blue color switch. The colorimetric changes and quenched fluorescence can be reversed by adding EDTA.


Multimode detection Absorption spectrum Upconversion quenching BPEI-Cu(II) complex Inner filter effect 



This work was supported by the National Natural Science Foundation of China (Grants No. 51272040 and 11604043), Thirteenth Five-Year Science and Technology Research Project of Education Department of Jilin Province (No. JJKH20170910KJ), the 111 project (No. B13013), and Project funded by China Postdoctoral Science Foundation (No. 2017 M611294).

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Supplementary material

604_2018_2740_MOESM1_ESM.doc (2.1 mb)
ESM 1 (DOC 2118 kb)


  1. 1.
    Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5(4):327–337. CrossRefGoogle Scholar
  2. 2.
    Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3(1):7–13. CrossRefGoogle Scholar
  3. 3.
    Matusch A, Depboylu C, Palm C, Wu B, Hoglinger GU, Schafer MK, Becker JS (2010) Cerebral bioimaging of Cu, Fe, Zn, and Mn in the MPTP mouse model of Parkinson's disease using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). J Am Soc Mass Spectrom 21(1):161–171.
  4. 4.
    Richardson SD (2001) Mass spectrometry in environmental sciences. Chem Rev 101(2):211–254. CrossRefGoogle Scholar
  5. 5.
    Pourjavid MR, Arabieh M, Yousefi SR, Akbari Sehat A (2016) Interference free and fast determination of manganese(II), iron(III) and copper(II) ions in different real samples by flame atomic absorption spectroscopy after column graphene oxide-based solid phase extraction. Microchem J 129:259–267. CrossRefGoogle Scholar
  6. 6.
    Karadaş C, Kara D (2017) Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry. Food Chem 220:242–248. CrossRefGoogle Scholar
  7. 7.
    Heredia JZ, Cina M, Savio M, Gil RA, Camiña JM (2016) Ultrasound-assisted pretreatment for multielement determination in maize seed samples by microwave plasma atomic emission spectrometry (MPAES). Microchem J 129:78–82. CrossRefGoogle Scholar
  8. 8.
    Liu M, Yang L, Zhang L (2016) Functionalization of magnetic hollow porous oval shape NiFe2O4 as a highly selective sorbent for the simultaneous determination of five heavy metals in real samples. Talanta 161:288–296. CrossRefGoogle Scholar
  9. 9.
    Xiong S, Ye S, Hu X, Xie F (2016) Electrochemical detection of ultra-trace Cu(II) and Iinteraction mechanism analysis between amine-groups functionalized CoFe2O4/reduced graphene oxide composites and metal ion. Electrochim Acta 217:24–33.
  10. 10.
    Lin M, Cho M, Choe WS, Yoo JB, Lee Y (2010) Polypyrrole nanowire modified with Gly-Gly-His tripeptide for electrochemical detection of copper ion. Biosens Bioelectron 26(2):940–945.
  11. 11.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562. CrossRefGoogle Scholar
  12. 12.
    Zhao W, Brook MA, Li Y (2008) Design of gold nanoparticle-based colorimetric biosensing assays. ChemBioChem 9(15):2363–2371.
  13. 13.
    Yu C, Wang T, Xu K, Zhao J, Li M, Weng S, Zhang J (2013) Characterization of a highly Cu2+-selective fluorescent probe derived from rhodamine B. Dyes Pigm 96(1):38–44.
  14. 14.
    Ren D, Liu Y, Liu X, Li Z, Li H, Yang X-F (2018) Spirohydrazine rhodamine as a fluorescent chemodosimeter for the selective detection of Cu(II) ions and its application in live cell imaging. Sens Actuators B Chem 255(Part 2):2321–2328. CrossRefGoogle Scholar
  15. 15.
    Zhang K, Guo J, Nie J, Du B, Xu D (2014) Ultrasensitive and selective detection of Cu2+ in aqueous solution with fluorescence enhanced CdSe quantum dots. Sens Actuators B Chem 190:279–287. CrossRefGoogle Scholar
  16. 16.
    Dong Y, Wang R, Li G, Chen C, Chi Y, Chen G (2012) Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Anal Chem 84(14):6220–6224. CrossRefGoogle Scholar
  17. 17.
    Ding Y, Wu F, Zhang Y, Liu X, de Jong EMLD, Gregorkiewicz T, Hong X, Liu Y, Aalders MCG, Buma WJ, Zhang H (2015) Interplay between static and dynamic energy transfer in biofunctional upconversion nanoplatforms. J Phys Chem Lett 6(13):2518–2523. CrossRefGoogle Scholar
  18. 18.
    Saleh SM, Ali R, Wolfbeis OS (2011) Quenching of the luminescence of upconverting luminescent nanoparticles by heavy metal ions. Chem Eur J 17(51):14611–14617. CrossRefGoogle Scholar
  19. 19.
    Zhang J, Li B, Zhang L, Jiang H (2012) An optical sensor for Cu(II) detection with upconverting luminescent nanoparticles as an excitation source. Chem Commun 48(40):4860–4862.
  20. 20.
    Li C, Liu J, Alonso S, Li F, Zhang Y (2012) Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale 4(19):6065–6071.
  21. 21.
    Wang F, Zhang C, Xue Q, Li H, Xian Y (2017) Label-free upconversion nanoparticles-based fluorescent probes for sequential sensing of Cu2+, pyrophosphate and alkaline phosphatase activity. Biosens Bioelectron 95:21–26. CrossRefGoogle Scholar
  22. 22.
    Jin J, Gu YJ, Man CWY, Cheng J, Xu Z, Zhang Y, Wang H, Lee VHY, Cheng SH, Wong WT (2011) Polymer-coated NaYF4: Yb3+, Er3+ upconversion nanoparticles for charge-dependent cellular imaging. ACS Nano 5(10):7838–7847. CrossRefGoogle Scholar
  23. 23.
    Wang Y, Shen P, Li C, Wang Y, Liu Z (2012) Upconversion fluorescence resonance energy transfer based biosensor for ultrasensitive detection of matrix metalloproteinase-2 in blood. Anal Chem 84(3):1466–1473. CrossRefGoogle Scholar
  24. 24.
    Pang Y, Zeng G, Tang L, Zhang Y, Liu Y, Lei X, Li Z, Zhang J, Xie G (2011) PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination 281:278–284. CrossRefGoogle Scholar
  25. 25.
    Sarkar S, Chatti M, Adusumalli VNKB, Mahalingam V (2015) Highly selective and sensitive detection of Cu2+ ions using Ce(III)/Tb(III)-doped SrF2 nanocrystals as fluorescent probe. ACS Appl Mater Interfaces 7(46):25702–25708. CrossRefGoogle Scholar
  26. 26.
    Na W, Liu H, Wang M, Su X (2017) A boronic acid based glucose assay based on the suppression of the inner filter effect of gold nanoparticles on the orange fluorescence of graphene oxide quantum dots. Microchim Acta 184(5):1463–1470. CrossRefGoogle Scholar
  27. 27.
    Chen L, Xia N, Li T, Bai Y, Chen X (2016) Aptasensor for visual and fluorometric determination of lysozyme based on the inner filter effect of gold nanoparticles on CdTe quantum dots. Microchim Acta 183(11):2917–2923. CrossRefGoogle Scholar
  28. 28.
    Wu D, Li G, Chen X, Qiu N, Shi X, Chen G, Sun Z, You J, Wu Y (2017) Fluorometric determination and imaging of glutathione based on a thiol-triggered inner filter effect on the fluorescence of carbon dots. Microchim Acta 184(7):1923–1931. CrossRefGoogle Scholar
  29. 29.
    Mao M, Tian T, He Y, Ge Y, Zhou J, Song G (2017) Inner filter effect based fluorometric determination of the activity of alkaline phosphatase by using carbon dots codoped with boron and nitrogen. Microchim Acta 185(1).
  30. 30.
    Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: a review on mechanisms and applications. Microchim Acta 184(7):1899–1914. CrossRefGoogle Scholar
  31. 31.
    Huang X, Schubert AB, Chrisman JD, Zacharia NS (2013) Formation and tunable disassembly of polyelectrolyte-Cu2+ layer-by-layer complex film. Langmuir 29(42):12959–12968. CrossRefGoogle Scholar
  32. 32.
    Deng HH, Li GW, Liu AL, Chen W, Lin XH, Xia XH (2014) Thermally treated bare gold nanoparticles for colorimetric sensing of copper ions. Microchim Acta 181(9):911–916.
  33. 33.
    Wang X, Chen L, Chen L (2014) Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods. Microchim Acta 181(1):105–110. CrossRefGoogle Scholar
  34. 34.
    Zhang Y, Li R, Xue Q, Li H, Liu J (2015) Colorimetric determination of copper(II) using a polyamine-functionalized gold nanoparticle probe. Microchim Acta 182(9):1677–1683. CrossRefGoogle Scholar
  35. 35.
    Zheng X, Pan J, Gao L, Wei X, Dai J, Shi W, Yan Y (2014) Silica nanoparticles doped with a europium(III) complex and coated with an ion imprinted polymer for rapid determination of copper(II). Microchim Acta 182(3–4):753–761. Google Scholar
  36. 36.
    Kong L, Chu X, Ling X, Ma G, Yao Y, Meng Y, Liu W (2016) Biocompatible glutathione-capped gold nanoclusters for dual fluorescent sensing and imaging of copper(II) and temperature in human cells and bacterial cells. Microchim Acta 183(7):2185–2195. CrossRefGoogle Scholar
  37. 37.
    Chao MR, Hu CW, Chen JL (2016) Fluorometric determination of copper(II) using CdTe quantum dots coated with 1-(2-thiazolylazo)-2-naphthol and an ionic liquid. Microchim Acta 183(4):1323–1332.

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Hong Shao
    • 1
  • Dan Xu
    • 1
  • Yadan Ding
    • 1
  • Xia Hong
    • 1
  • Yichun Liu
    • 1
  1. 1.Key Laboratory of UV-Emitting Materials and Technology, Ministry of EducationNortheast Normal UniversityChangchunPeople’s Republic of China

Personalised recommendations