Microchimica Acta

, 185:89 | Cite as

Voltammetric sensing based on the use of advanced carbonaceous nanomaterials: a review

  • Ankita Sinha
  • Dhanjai
  • Rajeev Jain
  • Huimin Zhao
  • Priyanka Karolia
  • Nimisha Jadon
Review Article


This review (with 210 references) summarizes recent developments in the design of voltammetric chemical sensors and biosensors based on the use of carbon nanomaterials (CNMs). It is divided into subsections starting with an introduction into the field and a description of its current state. This is followed by a large section on various types of voltammetric sensors and biosensors using CNMs with subsections on sensors based on the use of carbon nanotubes, graphene, graphene oxides, graphene nanoribbons, fullerenes, ionic liquid composites with CNMs, carbon nanohorns, diamond nanoparticles, carbon dots, carbon nanofibers and mesoporous carbon. The third section gives conclusion and an outlook. Tables are presented on the application of such sensors to voltammetric detection of neurotransmitters, metabolites, dietary minerals, proteins, heavy metals, gaseous molecules, pharmaceuticals, environmental pollutants, food, beverages, cosmetics, commercial goods and drugs of abuse. The authors also describe advanced approaches for the fabrication of robust functional carbon nano(bio)sensors for voltammetric quantification of multiple targets.

Graphical Abstract

Featuring execellent electrical, catalytic and surface properies, CNMs have gained enormous attention for designing voltammetric sensors and biosensors. Functionalized CNM-modified electrode interfaces have demonstrated their prominent role in biological, environmental, pharmaceutical, chemical, food and industrial analysis.


Nanosensors Carbon nanotubes Graphene Graphene oxide Fullerene Carbon nanohorns Diamond nanoparticles Carbon dots Carbon nanofibers 



Acetyl cholesterase




Acetylene black paste electrode










3-Aminophenylboronic acid




Anodic stripping voltammetry


Bisphenol A


Polymerised beta cyclodextrin


Bovine serum albumin


Carbon nanomaterials


Carbon nanotubes




Carbon ionic liquid


Carboxy functionalized multiwalled carbon nanotubes


Carbon nanofiber


Ceramic carbon electrode


Carbon paste electrode


Cerium imprinted


Carcinoembryonic antigen











CA 15-3

Breast cancer biomarker carbohydrate antigen


Human complement factor H




Concanavalin A




Cytomegalovirus pp65 antigen


Cyclic voltammetry




Digital versatile disc




Diamond nanoparticles


Differential pulse voltammetry


Adsorptive stripping differential pulse voltammetry


Electrochemically reduced graphene oxide




Escherichia coli F4


Electrochemically reduced graphene oxide nanoribbons


Electrochemically reduced fullerenes nanorods


Ethyl paraben


Iron N4 macrocycle




Graphene oxide


Reduced graphene oxide


Graphene nanoribbons


Graphene nanoflakes


Glassy carbon electrode


Glucose oxidase




Glutaraldehyde dehydrogenase






Horse raddish peroxidase




Homovanilinic acid


human chorionic gonadotropin


hollow platinum carbon chain


Imidazolium alkoxysilane




Latent membrane protein










Lactate oxidase


Linear sweep voltammetry


Mesoporous carbon


Macckia aurensis lectin


Molecularly imprinted polymers








Nanodiamond graphite electrode




Ordered mesoporous carbon paste electrode


1,4-Phenylene diisothiocyanate












Poly(allylamine hydrochloride)








(Poly(diallyldimethylammonium chloride)


Polyoxometalate anion


Porous cuprous oxide






Polycyclic aromatic amines




Phenyl amine


Phosphotungstic acid




3,4,9,10-Perylene tetracarboxylic acid




Pyrrolidinium ionic liquid


Quantum dots


Single strand DNA


p-Sulphonated calix-8-arene


Square wave voltammetry


Adsorptive stripping square wave voltammetry




Thionin-functionalized multiple graphene aerogel gold nanostars






Tetraoctylammonium bromide




Uric acid




Zirconium dioxide


Compliance with ethical standards

The author(s) declare that they have no competing interests.


  1. 1.
    Kempahanumakkagari S, Deep A, Kim KH, Kailasa SK, Yoon HO (2017) Nanomaterial-based electrochemical sensors for arsenic-A review. Biosens Bioelectron 95:106–116CrossRefGoogle Scholar
  2. 2.
    Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23CrossRefGoogle Scholar
  3. 3.
    Liu H, Zhang L, Yan M, Yu J (2017) Carbon nanostructures in biology and medicine. J Mater Chem B 5:6437–6450CrossRefGoogle Scholar
  4. 4.
    Zhang W, Zhu S, Luque R, Han S, Hu L, Xu G (2016) Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chem Soc Rev 45:715–752CrossRefGoogle Scholar
  5. 5.
    Saha A, Jiang C, Martí AA (2014) Carbon nanotube networks on different platforms. Carbon 79:1–18CrossRefGoogle Scholar
  6. 6.
    Milowska KZ, Majewski JA (2014) Graphene-based sensors: theoretical study. J Phys Chem C 118:17395–17401CrossRefGoogle Scholar
  7. 7.
    Wang Z, Dai Z (2015) Carbon nanomaterial-based electrochemical biosensors: an overview. Nanoscale 7:6420–6431CrossRefGoogle Scholar
  8. 8.
    Baptista FR, Belhout SA, Giordani S, Quinn SJ (2015) Recent developments in carbon nanomaterial sensors. Chem Soc Rev 44:4433–4453CrossRefGoogle Scholar
  9. 9.
    Yin PT, Shah S, Chhowalla M, Lee KB (2015) Design, synthesis, and characterization of graphene−nanoparticle hybrid materials for bioapplications. Chem Rev 115:2583–2531CrossRefGoogle Scholar
  10. 10.
    Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sens Actuat B: Chemical 207:690–715CrossRefGoogle Scholar
  11. 11.
    Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214CrossRefGoogle Scholar
  12. 12.
    Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116:5464–5519CrossRefGoogle Scholar
  13. 13.
    Liu J, Li Y, Li Y, Li J, Deng Z (2010) Noncovalent DNA decorations of graphene oxide and reduced graphene oxide toward water-soluble metal–carbon hybrid nanostructures via self-assembly. J Mater Chem 20:900–906CrossRefGoogle Scholar
  14. 14.
    Hamad AA, AlSaadi MA, Hayyan M, Juneidi I, Hashim HA (2016) Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: a Review. Electrochim Acta 193:321–343CrossRefGoogle Scholar
  15. 15.
    Kharlamova MV (2016) Advances in tailoring the electronic properties of single-walled carbon nanotubes. Progress in. Mater Sci 77:125–211Google Scholar
  16. 16.
    Podyacheva OY, Ismagilov ZR (2015) Nitrogen-doped carbon nanomaterials: to the mechanism of growth, electrical conductivity and application in catalysis. Catal Today 249:12–22CrossRefGoogle Scholar
  17. 17.
    Zhang L, Wang J, Tian Y (2014) Electrochemical in-vivo sensors using nanomaterials made from carbon species, noble metals, or semiconductors. Microchim Acta 181:1471–1484CrossRefGoogle Scholar
  18. 18.
    Martín A, Escarpa A (2016) Tailor designed exclusive carbon nanomaterial electrodes for off-chip and on-chip electrochemical detection. Microchim Acta 184:307–313CrossRefGoogle Scholar
  19. 19.
    Iijima S (1991) Helical microtubules of graphite carbon. Nature 354:56–58CrossRefGoogle Scholar
  20. 20.
    Dai H, Xiao D, He H, Li H, Yuan D, Zhang C (2015) Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182:893–908CrossRefGoogle Scholar
  21. 21.
    Niu Y, He J, Li Y, Zhao Y, Xia C, Yuan G, Zhang L, Zhang Y, Yu C (2016) Determination of α2,3-sialylated glycans in human serum using a glassy carbon electrode modified with carboxylated multiwalled carbon nanotubes, a polyamidoamine dendrimer, and a glycan-recognizing lectin from Maackia Amurensis. Microchim Acta 183:2337–2344CrossRefGoogle Scholar
  22. 22.
    Holanda LFD, Ribeiro FWP, Sousa CP, Casciano PDS, Neto PL, Correia AN (2016) Multi-walled carbon nanotubes–cobalt phthalocyanine modified electrode for electroanalytical determination of acetaminophen. J Electroanal Chem 772:9–16CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Fan L, Hong B, Ren J, Zhang M, Que Q, Ji J (2016) Nonenzymatic detection of glucose using three-dimensional PtNi nanoclusters electrodeposited on the multiwalled carbon nanotubes. Sens Actuat B 231:800–810CrossRefGoogle Scholar
  24. 24.
    Wang L, Sun Q, Liu Y, Lu Z (2016) Voltammetric determination of 4-chlorophenol using multiwall carbon nanotube/gold nanoparticle nanocomposite modified glassy carbon electrodes. RSC Advances 6:34692–34698CrossRefGoogle Scholar
  25. 25.
    Nezhadali A, Mojarrab M (2015) Fabrication of an electrochemical molecularly imprinted polymer triamterene sensor based on multivariate optimization using multi-walled carbon nanotubes. J Electroanal Chem 744:85–94CrossRefGoogle Scholar
  26. 26.
    Hu X, Zhang R (2016) Voltammetric determination of the endocrine disruptor diethylstilbestrol by using a glassy carbon electrode modified with a composite consisting of platinum nanoparticles and multiwalled carbon nanotubes. Microchim Acta 183:3069–3076CrossRefGoogle Scholar
  27. 27.
    Wang T, Zhao D, Guo X, Correa J, Riehl BL, Heineman WR (2014) Carbon nanotube-loaded Nafion film electrochemical sensor for metal ions: europium. Anal Chem 86:4354–4361CrossRefGoogle Scholar
  28. 28.
    Tarditto LV, Arévalo FJ, Zon MA, Ovando HG, Vettorazzi NR, Fernández H (2016) Electrochemical sensor for the determination of enterotoxigenic Escherichia coli in swine feces using glassy carbon electrodes modified with multi-walled carbon nanotubes. Microchem J 127:220–225CrossRefGoogle Scholar
  29. 29.
    Tsierkezos NG, Othman SH, Ritter U, Hafermann L, Knauer A, Köhler JM, Downing C, McCarthy EK (2016) Electrochemical analysis of ascorbic acid, dopamine, and uric acid on nobel metal modified nitrogen-doped carbon nanotubes. Sens Actuat B 231:218–229CrossRefGoogle Scholar
  30. 30.
    Liu J, Xie Y, Wang K, Zeng Q, Liu R, Liu X (2017) A nanocomposite consisting of carbon nanotubes and gold nanoparticles in an amphiphilic copolymer for voltammetric determination of dopamine, paracetamol and uric acid. Microchim Acta 184:1739–1745CrossRefGoogle Scholar
  31. 31.
    Gomez FJV, Martín A, Silva MF, Escarpa A (2015) Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta 182:1925–1931CrossRefGoogle Scholar
  32. 32.
    Daneshwar L, Rounaghi GH, Tarahomi S (2016) Voltammetric paracetamol sensor using a gold electrode made from a digital versatile disc chip and modified with a hybrid material consisting of carbon nanotubes and copper nanoparticles. Microchim Acta 183:3001–3007CrossRefGoogle Scholar
  33. 33.
    Alizadeh T, Ganjali MR, Akhoundian M, Norouzi P (2016) Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchim Acta 183:1123–1130CrossRefGoogle Scholar
  34. 34.
    Savalia R, Chatterjee S (2017) Sensitive detection of brucine an anti-metastatic drug for hepatocellular carcinoma at carbon nanotubes-nafion composite based biosensor. Biosens Bioelectron 98:371–377CrossRefGoogle Scholar
  35. 35.
    Jin M, Zhang X, Zhen Q, He Y, Chen X, Lyu W, Han R, Ding M (2017) An electrochemical sensor for indole in plasma based on MWCNTs-chitosan modified screen-printed carbon electrode. Biosens Bioelectron 98:392–397CrossRefGoogle Scholar
  36. 36.
    Kaur N, Thakur H, Kumar R, Prabhakar N (2016) An electrochemical sensor modified with poly(3,4-ethylenedioxythiophene)-wrapped multi-walled carbon nanotubes for enzyme inhibition-based determination of organophosphates. Microchim Acta 183:2307–2315CrossRefGoogle Scholar
  37. 37.
    Thakoor TT, Komori K, Ramnani P, Lee I, Mulchandani A (2015) Electrochemically functionalized seamless three-dimensional graphene-carbon nanotube hybrid for direct electron transfer of glucose oxidase and bioelectrocatalysis. Langmuir 31:13054–13061CrossRefGoogle Scholar
  38. 38.
    Wu D, Ren X, Hu L, Fan D, Zheng Y, Wei Q (2015) Electrochemical aptasensor for the detection of adenosine by using PdCu@MWCNTs-supported bienzymes as labels. Biosens Bioelectron 74:391–397CrossRefGoogle Scholar
  39. 39.
    Zhang N, Zhang K, Zhang L, Wang H, Shi H, Wang C (2015) A label-free electrochemical DNA sensor based on ZrO2/poly(thionine)/CNT modified electrode and its application for detecting CaMV35S transgene gene sequence. Anal Methods 7:3164–3168CrossRefGoogle Scholar
  40. 40.
    Taghdisi SM, Danesh NM, Emrani AS, Ramezani M, Abnous K (2015) A novel electrochemical aptasensor based on single-walled carbon nanotubes, gold electrode and complimentary strand of aptamer for ultrasensitive detection of cocaine. Biosens Bioelectron 73:245–250CrossRefGoogle Scholar
  41. 41.
    Saeedfar K, Heng LY, Chiang CP (2017) A DNA biosensor based on gold nanoparticle decorated on carboxylated multi-walled carbon nanotubes for gender determination of Arowana fish. Bioelectrochemistry 118:106–113CrossRefGoogle Scholar
  42. 42.
    Serafín V, Agüí L, Sedeño PY, Pingarrón JM (2015) Determination of prolactin hormone in serum and urine using an electrochemical immunosensor based on poly(pyrrolepropionic acid)/carbon nanotubes hybrid modified electrodes. Sens Actuators B 195:494–499CrossRefGoogle Scholar
  43. 43.
    Turdean GL, Szabo G (2015) Nitrite detection in meat products samples by square-wave voltammetry at a new single walled carbon naonotubes--myoglobin modified electrode. Food Chem 179:325–330CrossRefGoogle Scholar
  44. 44.
    Wu J, He J, Zhang Y, Zhao Y, Niu Y, Yu C (2017) Reusable voltammetric immunosensor for sCD40L, a biomarker for the acute coronary syndrome, using a glassy carbon electrode modified with a nanocomposite consisting of gold nanoparticles, branched polyethylenimine and carboxylated multiwalled carbon nanotubes. Microchimica Acta 184:1837–1845CrossRefGoogle Scholar
  45. 45.
    Yuan L, Lan Y, Han M, Bao J, Tu W, Dai Z (2013) Label-free and facile electrochemical biosensing using carbon nanotubes for malondialdehyde detection. Analyst 138:3131–3134CrossRefGoogle Scholar
  46. 46.
    Barsan MM, Ghica ME, Brett CM (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Anal Chim Acta 881:1–23CrossRefGoogle Scholar
  47. 47.
    Ambrosi A, Bonanni A, Pumera M (2011) Electrochemistry of folded graphene edges. Nanoscale 3:2256–2260CrossRefGoogle Scholar
  48. 48.
    Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: Synthesis, molecular functionalization and application in electrochemical sensors and biosensors. A review. Microchimica Acta 184:1–44CrossRefGoogle Scholar
  49. 49.
    Song Y, Luo Y, Zhu C, Li H, Du D, Lin Y (2016) Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials. Biosens Bioelectron 76:195–212CrossRefGoogle Scholar
  50. 50.
    Liu J, Liu Z, Barrow CJ, Yang W (2015) Molecularly engineered graphene surfaces for sensing applications: a review. Anal Chim Acta 859:1–19CrossRefGoogle Scholar
  51. 51.
    Shu K, Wang C, Zhao C, Ge Y, Wallace GG (2016) A free-standing graphene-polypyrrole hybrid paper via electropolymerization with an enhanced areal capacitance. Electrochim Acta 212:561–571CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Su M, Ge L, Ge S, Yu J, Song X (2013) Synthesis and characterization of graphene nanosheets attached to spiky MnO2 nanospheres and its application in ultrasensitive immunoassay. Carbon 57:22–33CrossRefGoogle Scholar
  53. 53.
    Pumera M (2014) Heteroatom modified graphenes: electronic and electrochemical applications. J Mater Chem C 2:6454–6461CrossRefGoogle Scholar
  54. 54.
    Wang X, Sun G, Routh P, Kim KD, Huang W, Chen P (2014) Heteroatom-doped graphene materials: syntheses, properties and applications. Chem Soc Rev 43:7067–7098CrossRefGoogle Scholar
  55. 55.
    Lazar P, Zboril R, Pumera M, Otyepka M (2014) Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Phys Chem Chem Phys: PCCP 16:14231–14235CrossRefGoogle Scholar
  56. 56.
    Wen Z (2016) Nitrogen-doped graphene modified glassy carbon electrode for anodic stripping voltammetric detection of lead ion. Int J Electrochem Sci 11:6648–6654CrossRefGoogle Scholar
  57. 57.
    Zhang Y, Sun R, Luo B, Wang L (2015) Boron-doped graphene as high-performance electrocatalyst for the simultaneously electrochemical determination of hydroquinone and catechol. Electrochim Acta 156:228–234CrossRefGoogle Scholar
  58. 58.
    Jiang L, Ding Y, Jiang F, Li L, Mo F (2014) Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin. Anal Chim Acta 833:22–28CrossRefGoogle Scholar
  59. 59.
    Peng X, Yuan W, Zou J, Wang B, Hu W, Xiong Y (2017) Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performances. Sci Reports 257:504–509Google Scholar
  60. 60.
    Yang R, Miao D, Liang Y, Qu L, Li J, Harrington PDB (2015) Ultrasensitive electrochemical sensor based on CdTe quantum dots-decorated poly(diallyldimethylammonium chloride)-functionalized graphene nanocomposite modified glassy carbon electrode for the determination of puerarin in biological samples. Electrochim Acta 173:839–846CrossRefGoogle Scholar
  61. 61.
    Jain R, Dhanjai, Sinha A (2016) Graphene-zinc oxide nanorods nanocomposite based sensor for voltammetric quantification of tizanidine in solubilized system. Appl Surf Sci 369:151–158CrossRefGoogle Scholar
  62. 62.
    Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014) Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sens Actuat 203:909–918CrossRefGoogle Scholar
  63. 63.
    Mani V, Govindasamy M, Chen SM, Karthik R, Huang ST (2016) Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim Acta 183:2267–2275CrossRefGoogle Scholar
  64. 64.
    Bai H, Wang C, Chen J, Peng J, Cao Q (2015) A novel sensitive electrochemical sensor based on in-situ polymerized molecularly imprinted membranes at graphene modified electrode for artemisinin determination. Biosens Bioelectron 64:352–358CrossRefGoogle Scholar
  65. 65.
    He B (2016) Differential pulse voltammetric assay for the carcinoembryonic antigen using a glassy carbon electrode modified with layered molybdenum selenide, graphene, and gold nanoparticles. Microchim Acta 184:229–235CrossRefGoogle Scholar
  66. 66.
    Peng J, Feng Y, Han XX, Gao ZN (2016) Simultaneous determination of bisphenol A and hydroquinone using a poly(melamine) coated graphene doped carbon paste electrode. Microchim Acta 183:2289–2296CrossRefGoogle Scholar
  67. 67.
    Tian F, Li H, Li M, Li C, Lei Y, Yang B (2017) A tantalum electrode coated with graphene nanowalls for simultaneous voltammetric determination of dopamine, uric acid, L-tyrosine, and hydrochlorothiazide. Microchim Acta 184:1611–1619CrossRefGoogle Scholar
  68. 68.
    Ruiyi L, Jiajia W, Ling L, Zaijun L (2016) Ultrasensitive direct detection of dsDNA using a glassy carbon electrode modified with thionin-functionalized multiple graphene aerogel and gold nanostars. Microchim Acta 183:1641–1649CrossRefGoogle Scholar
  69. 69.
    Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB (2017) Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Microchim Acta 184:2131–2140CrossRefGoogle Scholar
  70. 70.
    Tian J, Huang T, Wang P, Lu J (2015) GOD/HRP bienzyme synergistic catalysis in a 2-D graphene framework for glucose biosensing. J Electrochem Soc 162:B319–B325CrossRefGoogle Scholar
  71. 71.
    Zhang X, Zhou D, Sheng S, Yang J, Chen X, Xie G, Xiang H (2016) Electrochemical immunoassay for the cancer marker LMP-1 (Epstein-Barr virus-derived latent membrane protein 1) using a glassy carbon electrode modified with Pd@Pt nanoparticles and a nanocomposite consisting of graphene sheets and MWCNTs. Microchim Acta 183:2055–2062CrossRefGoogle Scholar
  72. 72.
    Aslan S, Anik U (2015) Microbial glucose biosensors based on glassy carbon paste electrodes modified with Gluconobacter Oxydans and graphene oxide or graphene-platinum hybrid nanoparticles. Microchim Acta 183:73–81CrossRefGoogle Scholar
  73. 73.
    Chen L, Guo X, Guo B, Cheng S, Wang F (2016) Electrochemical investigation of a metalloporphyrin–graphene composite modified electrode and its electrocatalysis on ascorbic acid. J Electroanal Chem 760:105–112CrossRefGoogle Scholar
  74. 74.
    Sethuraman V, Muthuraja P, Raj JA, Manisankar P (2016) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Biosens Bioelectron 84:112–119CrossRefGoogle Scholar
  75. 75.
    Jain R, Sinha A, Khan AL (2016) Polyaniline-graphene oxide nanocomposite sensor for quantification of calcium channel blocker levamlodipine. Mater Sci Engineer C 65:205–214CrossRefGoogle Scholar
  76. 76.
    Dai H, Wang N, Wang D, Ma H, Lin M (2016) An electrochemical sensor based on phytic acid functionalized polypyrrole/graphene oxide nanocomposites for simultaneous determination of Cd(II) and Pb(II). Chem Engineer J 299:150–155CrossRefGoogle Scholar
  77. 77.
    Dadkhah S, Ziaei E, Mehdinia A, Kayyal TB, Jabbari A (2016) A glassy carbon electrode modified with amino-functionalizedvgraphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta 183:1933–1941CrossRefGoogle Scholar
  78. 78.
    Li J, Wang X, Duan H, Wang Y, Luo C (2016) Ultra-sensitive determination of epinephrine based on TiO2-Au nanoclusters supported on reduced graphene oxide and carbon nanotube hybrid nanocomposites. Mater Sci Engineer C 64:391–398CrossRefGoogle Scholar
  79. 79.
    Yang YJ (2015) One-pot synthesis of reduced graphene oxide/zinc sulfide nanocomposite at room temperature for simultaneous determination of ascorbic acid, dopamine and uric acid. Sens Actuat B 221:750–759CrossRefGoogle Scholar
  80. 80.
    Dai H, Wang N, Wang D, Zhang X, Ma H, Lin M (2016) Voltammetric uric acid sensor based on a glassy carbon electrode modified with a nanocomposite consisting of polytetraphenylporphyrin, polypyrrole, and graphene oxide. Microchim Acta 183:3053–3059CrossRefGoogle Scholar
  81. 81.
    Istrate OM, Rotariu L, Bala C (2015) Electrochemical determination of NADH using screen printed carbon electrodes modified with reduced graphene oxide and poly(allylamine hydrochloride). Microchim Acta 183:57–65CrossRefGoogle Scholar
  82. 82.
    Wang Y, Wang W, Li G, Liu Q, Wei T, Li B, Jiang C, Sun Y (2016) Electrochemical detection of L-cysteine using a glassy carbon electrode modified with a two-dimensional composite prepared from platinum and Fe3O4 nanoparticles on reduced graphene oxide. Microchim Acta 183:3221–3228CrossRefGoogle Scholar
  83. 83.
    Xing L, Ma Z (2015) A glassy carbon electrode modified with a nanocomposite consisting of MoS2 and reduced graphene oxide for electrochemical simultaneous determination of ascorbic acid, dopamine, and uric acid. Microchim Acta 183:257–263CrossRefGoogle Scholar
  84. 84.
    Mei LP, Feng JJ, Wu L, Chen JR, Shen L, Xie Y, Wang AJ (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183:2039–2046CrossRefGoogle Scholar
  85. 85.
    Shamsipur M, Farzin L, Tabrizi MA (2016) Ultrasensitive aptamer-based on-off assay for lysozyme using a glassy carbon electrode modified with gold nanoparticles and electrochemically reduced graphene oxide. Microchim Acta 183:2733–2743CrossRefGoogle Scholar
  86. 86.
    Silva SM, Aguiar LF, Carvalho RMS, Tanaka AA, Damos FS, Luz RCS (2016) A glassy carbon electrode modified with an iron N4-macrocycle and reduced graphene oxide for voltammetric sensing of dissolved oxygen. Microchim Acta 183:1251–1259CrossRefGoogle Scholar
  87. 87.
    Palanisamy S, Ramaraj SK, Chen SM, Velusamy V, Yang TCK, Chen TW (2017) Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine. Microchim Acta 184:1051–1057CrossRefGoogle Scholar
  88. 88.
    Zhan X, Hu G, Tagberg W, Zhan S, Xu H, Zhou P (2016) Electrochemical aptasensor for tetracycline using a screen-printed carbon electrode modified with an alginate film containing reduced graphene oxide and magnetite (Fe3O4) nanoparticles. Microchim Acta 183:723–729CrossRefGoogle Scholar
  89. 89.
    Zhan F, Gao F, Wang X, Xie L, Gao F, Wang Q (2016) Determination of lead(II) by adsorptive stripping voltammetry using a glassy carbon electrode modified with β-cyclodextrin and chemically reduced graphene oxide composite. Microchim Acta 183:1169–1176CrossRefGoogle Scholar
  90. 90.
    Zhao L, Wu G, Cai Z, Zhao T, Yao Q, Chen X (2015) Ultrasensitive non-enzymatic glucose sensing at near-neutral pH values via anodic stripping voltammetry using a glassy carbon electrode modified with Pt3Pd nanoparticles and reduced graphene oxide. Microchim Acta 182:2055–2060CrossRefGoogle Scholar
  91. 91.
    Wu F, Huang T, Hu Y, Yang X, Ouyang Y, Xie Q (2016) Differential pulse voltammetric simultaneous determination of ascorbic acid, dopamine and uric acid on a glassy carbon electrode modified with electroreduced graphene oxide and imidazolium groups. Microchim Acta 183:2539–2546CrossRefGoogle Scholar
  92. 92.
    Gode C, Yola ML, Yilmaz A, Atar N, Wang S (2017) A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J Coll Inter Sci 508:25–531CrossRefGoogle Scholar
  93. 93.
    Jia D, Liu L, Li S, Chen C, Lua Y, Wu J, Liu Q (2017) Smartphone based cyclic voltammetry system with graphene modified screen printed electrodes for glucose detection. Biosens Bioelectron 98:449–456CrossRefGoogle Scholar
  94. 94.
    Jirasirichote A, Punrat E, Ngam AS, Chailapakul O, Chuanuwatanakul S (2017) Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta 175:331–337CrossRefGoogle Scholar
  95. 95.
    Radhapyari K, Kotoky P, Das MR, Khan R (2013) Graphene-polyaniline nanocomposite based biosensor for detection of antimalarial drug artesunate in pharmaceutical formulation and biological fluids. Talanta 111:47–53CrossRefGoogle Scholar
  96. 96.
    Rabti A, Martinez CCM, Pires LB, Raouafi N, Merkoci A (2016) Ferrocene functionalized graphene electrode for biosensing applications. Anal Chim Acta 926:8–35CrossRefGoogle Scholar
  97. 97.
    Akter R, Jeong B, Choi JS, Rahman MA (2016) Ultrasensitive nanoimmunosensor by coupling non-covalent functionalized graphene oxide platform and numerous ferritin labels on carbon nanotubes. Biosens Bioelectron 80:123–130CrossRefGoogle Scholar
  98. 98.
    Ensafi AA, Sohrabi M, Asl MJ, Rezaei B (2015) Selective and sensitive furazolidone biosensor based on DNA-modified TiO2-reduced graphene oxide. Appl Surf Sci 356:301–307CrossRefGoogle Scholar
  99. 99.
    Ye Y, Gao J, Zhuang H, Zheng H, Sun H, Ye Y, Xu X (2016) Cao X (2016) Electrochemical gene sensor based on a glassy carbon electrode modified with hemin-functionalized reduced graphene oxide and gold nanoparticle-immobilized probe DNA. Microchim Acta 184:245–252CrossRefGoogle Scholar
  100. 100.
    Marlinda AR, Pandikumar A, Jayabal S, Yusoff N, Suriani AB, Huang NM (2016) Voltammetric determination of nitric oxide using a glassy carbon electrode modified with a nanohybrid consisting of myoglobin, gold nanorods, and reduced graphene oxide. Microchim Acta 183:3077–3085CrossRefGoogle Scholar
  101. 101.
    Zhu G, Yi Y, Liu Z, Lee HJ, Chen J (2016) Highly sensitive electrochemical sensing based on 2-hydroxypropyl-β-cyclodextrin-functionalized graphene nanoribbons. Electrochem Commun 66:10–15CrossRefGoogle Scholar
  102. 102.
    Xin X, Sun S, Li H, Wang M, Jia R (2015) Electrochemical bisphenol A sensor based on core–shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sens Actuators B 209:275–280CrossRefGoogle Scholar
  103. 103.
    Zhang R, Sun CL, YJ L, Chen W (2015) Graphene nanoribbon-supported pt-pd concave nanocubes for electrochemical detection of TNT with high sensitivity and selectivity. Anal Chem 87:12262–12269CrossRefGoogle Scholar
  104. 104.
    Zhu G, Yi Y, Han Z, Wang K, Wu X (2014) Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core-shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure. Anal Chim Acta 845:30–37CrossRefGoogle Scholar
  105. 105.
    Erkal A, Asik I, Yavuz S, Kariper A, Ustundag Z (2016) Biosensor application of carbonaceous nanocoil material: preparation, characterization, and determination of dopamine and uric acid in the presence of ascorbic acid. J Electrochem Soc 163:H269–H277CrossRefGoogle Scholar
  106. 106.
    Ismail NS, Le QH, Yoshikawa H, Saito M, Tamiya E (2014) Development of non-enzymatic electrochemical glucose sensor based on graphene oxide nanoribbon–gold nanoparticle hybrid. Electrochim Acta 146:98–105CrossRefGoogle Scholar
  107. 107.
    Narayana PS, Teradal NL, Seetharamappa J, Satpati AK (2015) A novel electrochemical sensor for non-ergoline dopamine agonist pramipexole based on electrochemically reduced graphene oxide nanoribbons. Anal Methods 7:3912–3919CrossRefGoogle Scholar
  108. 108.
    Yi Y, Zhu G, Wu X, Wang K (2016) Highly sensitive and simultaneous electrochemical determination of 2-aminophenol and 4-aminophenol based on poly(L-arginine)-beta-cyclodextrin/carbon nanotubes@graphene nanoribbons modified electrode. Biosens Bioelectron 77:353–358CrossRefGoogle Scholar
  109. 109.
    Liu H, Liu Y, Zhu D (2011) Chemical doping of graphene. J Mater Chem 21:3335–3345CrossRefGoogle Scholar
  110. 110.
    Hui KH, Ambrosi A, Sofer Z, Pumera M, Bonanni A (2015) The dopant type and amount governs the electrochemical performance of graphene platforms for the antioxidant activity quantification. Nanoscale 7:9040–9045CrossRefGoogle Scholar
  111. 111.
    MJ J, Kim JC, Choi HJ, Choi IT, Kim SG, Lim K, Ko J, Lee JJ, Jeon IY, Baek JB, Kim HK (2013) N-doped graphene nanoplatelets as superior metal-free counter electrodes for organic dye-sensitized solar cells. ACS Nano 7:5243–5250CrossRefGoogle Scholar
  112. 112.
    Tan SM, Poh HL, Sofer Z, Pumera M (2013) Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling. The Analyst 138:4885–4891CrossRefGoogle Scholar
  113. 113.
    Yu H, Zhang B, Bulin C, Li R, Xing R (2016) Highly efficient synthesis of graphene oxide based on improved hummers method. Sci Reports.
  114. 114.
    Kovytyukhova NI, Olliver PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, Gorchinskiy AD (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRefGoogle Scholar
  115. 115.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun J, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRefGoogle Scholar
  116. 116.
    Peng L, Xu Z, Liu Z, Wei Y, Sun H, Li Z, Zhao X, Gao C (2015) An iron-based green approach to 1-h production of single-layer graphene oxide. Nat Commun.
  117. 117.
    Zuo X, He S, Li D, Peng C, Huang Q, Song S, Fan C (2010) Graphene oxide facilitated electron transfer of metalloproteins at electrode surfaces. Langmuir 26:1936–1939CrossRefGoogle Scholar
  118. 118.
    Das D, Ghosh S, Basumallick I (2014) Electrochemical studies on glucose oxidation in an enzymatic fuel cell with enzyme immobilized on to reduced graphene oxide surface. Electroanalysis 26:2408–2418CrossRefGoogle Scholar
  119. 119.
    Terrones M, Méndez ARB, Delgado JC, Urías FL, Cantu YIV, Macías FJR, Elías AL, Sandoval EM, Márquez AGC, Charlier JC, Terrones H (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and application. Nano Today5:351-372.Google Scholar
  120. 120.
    Martín A, Ferrer JH, Vázquez L, Martínez MT, Escarpa A (2014) Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Advances 4:132–139CrossRefGoogle Scholar
  121. 121.
    Compton RG, Spakman RA, Wellington RG (1992) A C60 modified electrode: electrochemical formation of tetra-butylammonium salts of C60 anions. J Electroanal Chem 327:337–341CrossRefGoogle Scholar
  122. 122.
    Afreen S, Muthoosamy K, Manickam S, Hashim U (2015) Functionalized fullerene C60 as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens Bioelectron 63:354–364CrossRefGoogle Scholar
  123. 123.
    Pilehvar S, Wael KD (2015) Recent advances in electrochemical biosensors based on fullerene-C60 nano-structured platforms. Biosensors 5:712–735CrossRefGoogle Scholar
  124. 124.
    Rather JA, Harthi AJA, Khudaish EA, Qurashi A, Munam A, Kannan P (2016) An electrochemical sensor based on fullerene nanorods for the detection of paraben, an endocrine disruptor. Anal Methods 8:5690–5700CrossRefGoogle Scholar
  125. 125.
    Rather JA, Khudaish EA, Munam A, Qurashi A, Kannan P (2016) Electrochemically reduced fullerene–graphene oxide interface for swift detection of Parkinsons disease biomarkers. Sens Actuators B 237:672–684CrossRefGoogle Scholar
  126. 126.
    Ye C, Zhong X, Chai Y, Yuan R (2015) Sensing glucose based on its affinity for concanavalin A on a glassy carbon electrode modified with a C60 fullerene nanocomposite. Microchim Acta 182:2215–2221CrossRefGoogle Scholar
  127. 127.
    Gan T, Hu C, Hu S (2014) Preparation of graphene oxide–fullerene/phosphotungstic acid films and their application as sensor for the determination of cis-jasmone. Anal Methods 6:9220–9227CrossRefGoogle Scholar
  128. 128.
    Ardakani MM, Ahmadi SH, Mahmoudabadi ZS, Khoshroo A (2016) Nano composite system based on fullerene-functionalized carbon nanotubes for simultaneous determination of levodopa and acetaminophen. Measurement 91:162–167CrossRefGoogle Scholar
  129. 129.
    Brahman PK, Suresh L, Lokesh V, Nizamuddin S (2016) Fabrication of highly sensitive and selective nanocomposite film based on CuNPs/fullerene-C60/MWCNTs: An electrochemical nanosensor for trace recognition of paracetamol. Anal Chim Acta 917:107–116CrossRefGoogle Scholar
  130. 130.
    Thirumalraj B, Palanisamy S, Chen SM, Lou BS (2016) Preparation of highly stable fullerene C60 decorated graphene oxide nanocomposite and its sensitive electrochemical detection of dopamine in rat brain and pharmaceutical samples. J Coll Inter Sci 462:375–381CrossRefGoogle Scholar
  131. 131.
    Ye C, Zhong X, Wang MQ, Chai Y, Yuan R (2016) Cyclovoltammetric acetylcholinesterase activity assay after inhibition and subsequent reactivation by using a glassy carbon electrode modified with palladium nanorods composited with functionalized C60 fullerene. Microchim Acta 183:2403–2409CrossRefGoogle Scholar
  132. 132.
    Liu R, Lei C, Zhong T, Long WZ, Huan S, Zhang Q (2016) A graphene/ionic liquid modified selenium-doped carbon paste electrode for determination of copper and antimony. Anal Methods 8:1120–1126CrossRefGoogle Scholar
  133. 133.
    Nooshabadi MS, Roostaee M, Javazmi FT (2016) Graphene oxide/NiO nanoparticle composite-ionic liquid modified carbon paste electrode for selective sensing of 4-chlorophenol in the presence of nitrite. J Mol Liq 219:142–148CrossRefGoogle Scholar
  134. 134.
    Absalan G, Akhond M, Soleimani M, Ershadifar H (2016) Efficient electrocatalytic oxidation and determination of isoniazid on carbon ionic liquid electrode modified with electrodeposited palladium nanoparticles. J Electroanal Chem 761:1–7CrossRefGoogle Scholar
  135. 135.
    Wu W (2016) Sensitively voltammetric determination of vanillin with a molecularly imprinted ionic liquid polymer-carboxyl single- walled carbon nanotubes composite electrode. Int J Electrochem Sci 11:6009–6022CrossRefGoogle Scholar
  136. 136.
    Pan Y, Shang L, Zhao F, Zeng B (2015) A novel electrochemical 4-nonyl-phenol sensor based on molecularly imprinted poly (o-phenylenediamine-co-o-toluidine)−nitrogen-doped graphene nanoribbons−ionic liquid composite film. Electrochim Acta 151:423–428CrossRefGoogle Scholar
  137. 137.
    Ardakani MM, Khoshroo A (2014) High performance electrochemical sensor based on fullerene-functionalized carbon nanotubes/ionic liquid: Determination of some catecholamines. Electrochem Commun 42:9–12CrossRefGoogle Scholar
  138. 138.
    Bagheri H, Afkhami A, Khoshsafar H, Rezaei M, Shirzadmehr A (2013) Simultaneous electrochemical determination of heavy metals using a triphenylphosphine/MWCNTs composite carbon ionic liquid electrode. Sens Actuat B 186:451–460CrossRefGoogle Scholar
  139. 139.
    Niu X, Yang W, Guo H, Ren J, Gao J (2013) Highly sensitive and selective dopamine biosensor based on 3,4,9,10-perylene tetracarboxylic acid functionalized graphene sheets/multi-wall carbon nanotubes/ionic liquid composite film modified electrode. Biosens Bioelectron 41:225–231CrossRefGoogle Scholar
  140. 140.
    Ardakani MM, Khoshroo A, Hosseinzadeh L (2015) Simultaneous determination of hydrazine and hydroxylamine based on fullerene-functionalized carbon nanotubes/ionic liquid nanocomposite. Sens Actuators B 214:132–137CrossRefGoogle Scholar
  141. 141.
    Zhuang X, Wang H, He T, Chen L (2016) Enhanced voltammetric determination of dopamine using a glassy carbon electrode modified with ionic liquid-functionalized graphene and carbon dots. Microchim Acta 183:3177–3182CrossRefGoogle Scholar
  142. 142.
    Wang Y, Han M, Ye M, Wu K, Wu T, Li C (2017) Voltammetric myoglobin sensor based on a glassy carbon electrode modified with a composite film consisting of carbon nanotubes and a molecularly imprinted polymerized ionic liquid. Microchim Acta 184:195–202CrossRefGoogle Scholar
  143. 143.
    Li Y, Zhai X, Wang H, Liu X, Guo L, Ji X, Wang L, Qiu H, Liu X (2015) Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly(β-cyclodextrin). Microchim Acta 182:1877–1884CrossRefGoogle Scholar
  144. 144.
    Rafati AA, Afraz A, Hajian A, Assari P (2014) Simultaneous determination of ascorbic acid, dopamine, and uric acid using a carbon paste electrode modified with multiwalled carbon nanotubes, ionic liquid, and palladium nanoparticles. Microchim Acta 181:1999–2008CrossRefGoogle Scholar
  145. 145.
    Fan Y, Hu G, Zhang T, Dong X, Zhong Y, Li X, Miao J, Hua S (2016) Determination of glucose in food by the ionic liquid and carbon nanotubes modified dual-enzymatic sensors. Food Anal Methods 9:2491–2500CrossRefGoogle Scholar
  146. 146.
    Zheng Y, Liu Z, Zhan H, Li J, Zhang C (2016) Studies on electrochemical organophosphate pesticide (OP) biosensor design based on ionic liquid functionalized graphene and a Co3O4 nanoparticle modified electrode. Anal Methods 8:5288–5295CrossRefGoogle Scholar
  147. 147.
    Roushani M, Shahdostfard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sens Actuat B 207:764–771CrossRefGoogle Scholar
  148. 148.
    Roushani M, Valipour A (2015) Voltammetric immunosensor for human chorionic gonadotropin using a glassy carbon electrode modified with silver nanoparticles and a nanocomposite composed of graphene, chitosan and ionic liquid, and using riboflavin as a redox probe. Microchim Acta 183:845–853CrossRefGoogle Scholar
  149. 149.
    Roushani M, Valipour A (2016) Using electrochemical oxidation of rutin in modeling a novel and sensitive immunosensor based on Pt nanoparticle and graphene–ionic liquid–chitosan nanocomposite to detect human chorionic gonadotropin. Sens Actuat B 222:1103–1111CrossRefGoogle Scholar
  150. 150.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072–2074CrossRefGoogle Scholar
  151. 151.
    Zhang S, Zhang Q, Zhang Y, Chen Z, Watanabe M, Deng Y (2016) Beyond solvents and electrolytes: Ionic liquids-based advanced functional materials. Progress Mater Sci 77:80–124CrossRefGoogle Scholar
  152. 152.
    Jain R, Jadon N, Singh K (2016) New generation electrode materials for sensitive detection. J Electrochem Soc 163:H159–H170CrossRefGoogle Scholar
  153. 153.
    Zhu X, Qin H, Wu G, Li J, Yuan X, Wu D (2016) Voltammetric behavior of HeLa cells on a carbon nanotube/ionic liquid modified electrode for cytotoxicity evaluation of chlorophenols. Anal Methods 8:171–176CrossRefGoogle Scholar
  154. 154.
    Yuge R, Nihey F, Toyama K, Yudasaka M (2016) Preparation and characterization of newly discovered fibrous aggregates of single-walled carbon nanohorns. Adv Mater 28:7174–7177CrossRefGoogle Scholar
  155. 155.
    Karousis N, Martinez IS, Ewels CP, Tagmatarchis N (2016) Structure, properties, functionalization, and applications of carbon nanohorns. Chem Rev 116:4850–4883CrossRefGoogle Scholar
  156. 156.
    Ran X, Yang L, Zhang J, Deng G, Li Y, Xie X, Zhao H, Li CP (2015) Highly sensitive electrochemical sensor based on beta-cyclodextrin-gold@3,4,9,10-perylene tetracarboxylic acid functionalized single-walled carbon nanohorns for simultaneous determination of myricetin and rutin. Anal Chim Acta 892:85–94CrossRefGoogle Scholar
  157. 157.
    Valentini F, Ciambella E, Conte V, Sabatini L, Ditaranto N, Cataldo F, Palleschi G, Bonchio M, Giacalone F, Syrgiannis Z, Prato M (2014) Highly selective detection of epinephrine at oxidized single-wall carbon nanohorns modified screen printed electrodes (SPEs). Biosens Bioelectron 59:94–98CrossRefGoogle Scholar
  158. 158.
    Yang L, Ran X, Cai L, Li Y, Zhao H, Li CP (2016) Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosens Bioelectron 83:347–352CrossRefGoogle Scholar
  159. 159.
    Zhu S, Zhao X, Chen G, Wang H, Xu G, You J (2015) Electrochemical behavior and voltammetric determination of dihydronicotinamide adenine dinucleotide using a glassy carbon electrode modified with single-walled carbon nanohorns. Ionics 21:2911–2917CrossRefGoogle Scholar
  160. 160.
    Zhu S, Gao W, Zhang L, Zhao J, Xu G (2014) Simultaneous voltammetric determination of dihydroxybenzene isomers at single-walled carbon nanohorn modified glassy carbon electrode. Sens Actuat B 198:388–394CrossRefGoogle Scholar
  161. 161.
    Zhu S, Zhang J, Zhao X, Wang H, Xu G, You J (2013) Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns. Microchim Acta 181:445–451CrossRefGoogle Scholar
  162. 162.
    Zhang G, He P, Feng W, Ding S, Chen J, Li L, He H, Zhang S, Dong F (2016) Carbon nanohorns/poly(glycine) modified glassy carbon electrode: Preparation, characterization and simultaneous electrochemical determination of uric acid, dopamine and ascorbic acid. J Electroanal Chem 760:24–31CrossRefGoogle Scholar
  163. 163.
    Liu F, Xiang G, Yuan R, Chen X, Luo F, Jiang D, Huang S, Li Y, Pu X (2014) Procalcitonin sensitive detection based on graphene-gold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags. Biosens Bioelectron 60:210–217CrossRefGoogle Scholar
  164. 164.
    Huang W, Xiang G, Jiang D, Liu L, Liu C, Liu F, Pu X (2016) Electrochemical immunoassay for cytomegalo virus antigen detection with multiple signal amplification using HRP and Pt-Pd nanoparticles functionalized single-walled carbon nanohorns. Electroanalysis 28:1126–1133CrossRefGoogle Scholar
  165. 165.
    Habibi B, Jahanbakhshi M (2016) A glassy carbon electrode modified with carboxylated diamond nanoparticles for differential pulse voltammetric simultaneous determination of guanine and adenine. Microchim Acta 183:2317–2325CrossRefGoogle Scholar
  166. 166.
    Shahrokhian S, Nassab NH (2013) Nanodiamond decorated with silver nanoparticles as a sensitive film modifier in a jeweled electrochemical sensor: application to voltammetric determination of thioridazine. Electroanalysis 25:417–425CrossRefGoogle Scholar
  167. 167.
    Shahrokhian S, Ranjbar S, Ghalkhani M (2016) Modification of the electrode surface by Ag nanoparticles decorated nano diamond-graphite for voltammetric determination of ceftizoxime. Electroanalysis 28:469–476CrossRefGoogle Scholar
  168. 168.
    Liu L, Song C, Zhang Z, Yang J, Zhou L, Zhang X, Xie G (2015) Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction. Biosens Bioelectron 70:351–357CrossRefGoogle Scholar
  169. 169.
    Briones M, Casero E, Dominguez MDP, Ruiz MA, Alfambra AMP, Pariente F, Lorenzo E, Vazquez L (2015) Diamond nanoparticles based biosensors for efficient glucose and lactate determination. Biosens Bioelectron 68:521–528CrossRefGoogle Scholar
  170. 170.
    Man HB, Ho D (2012) Diamond as a nanomedical agent for versatile applications in drug delivery, imaging and sensing. Phys Status Solidi A 209:1609–1618CrossRefGoogle Scholar
  171. 171.
    Chen J, He P, Bai H, He S, Zhang T, Zhang X, Dong F (2017) Poly beta-cyclodextrin)/carbon quantum dots modified glassy carbonelectrode: preparation, characterization and simultaneouselectrochemical determination of dopamine, uric acid and tryptophan. Sens Actuat B 252:9–16Google Scholar
  172. 172.
    Zhang H, Dai P, Huang L, Huang Y, Huang Q, Zhang W, Wei C, Hu S (2014) A nitrogen-doped carbon dot/ferrocene@beta-cyclodextrin composite as an enhanced material for sensitive and selective determination of uric acid. Anal Methods 6:2687–2691CrossRefGoogle Scholar
  173. 173.
    Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 98:99–304CrossRefGoogle Scholar
  174. 174.
    Huang Q, Zhang H, Hu S, Li F, Weng W, Chen J, Wang Q, He Y, Zhang W, Bao X (2014) A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosens Bioelectron 52:277–280CrossRefGoogle Scholar
  175. 175.
    Huang Q, Hu S, Zhang H, Chen J, He Y, Li F, Weng W, Ni J, Bao X, Lin Y (2013) Carbon dots and chitosan composite film based biosensor for the sensitive and selective determination of dopamine. Analyst 138:5417–5423CrossRefGoogle Scholar
  176. 176.
    Hu S, Huang Q, Lin Y, Wei C, Zhang H, Zhang W, Guo W, Bao X, Shi J, Hao A (2014) Reduced graphene oxide-carbon dots composite as an enhanced material for electrochemical determination of dopamine. Electrochim Acta 130:805–809CrossRefGoogle Scholar
  177. 177.
    Guo H, Jin H, Gui R, Wang Z, Xia J, Zhang F (2017) Electrodeposition one-step preparation of silver nanoparticles/carbon dots/reduced graphene oxide ternary dendritic nanocomposites for sensitive detection of doxorubicin. Sens Actuat B 253:50–57CrossRefGoogle Scholar
  178. 178.
    Shao X, Gu H, Wang Z, Chai X, Tian Y, Shi G (2013) Highly selective electrochemical strategy for monitoring of cerebral Cu2+ based on a carbon dot-TEPA hybridized surface. Anal Chem 85:418–425CrossRefGoogle Scholar
  179. 179.
    Huang Q, Lin X, Zhu JJ, Tong QX (2017) Pd-Au@carbon dots nanocomposite: Facile synthesis and application as an ultrasensitive electrochemical biosensor for determination of colitoxin DNA in human serum. Biosens Bioelectron 94:507–512CrossRefGoogle Scholar
  180. 180.
    Li L, Liu D, Wang K, Mao H, You T (2017) Quantitative detection of nitrite with N-doped graphene quantumdots decorated N-doped carbon nanofibers composite-basedelectrochemical sensor. Sens Actuat B 252:17–23CrossRefGoogle Scholar
  181. 181.
    Hashemzadeh N, Hasanzadeh M, Shadjou N, Ziaei JE, Khoubnasabjafari M, Jouyban A (2016) Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J Pharm Anal 6:235–241CrossRefGoogle Scholar
  182. 182.
    Shadjou N, Hasanzadeh M, Talebi F, Marjani AP (2016) Graphene quantum dot functionalized by betacyclodextrin: a novel nanocomposite toward amplification of l-cysteine electro-oxidation signals. Nanocomposites 2:18–28CrossRefGoogle Scholar
  183. 183.
    Huang JY, Bao T, TX H, Wen W, Zhang XH, Wang SF (2017) Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots. Microchim Acta 184:127–135CrossRefGoogle Scholar
  184. 184.
    Wang G, Shi G, Chen X, Yao R, Chen F (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim. Acta 182:315–322CrossRefGoogle Scholar
  185. 185.
    Cui R, Xu D, Xie X, Yi Y, Quan Y, Zhou M, Gong J, Han Z, Zhang G (2017) Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chemistry 221:457–463CrossRefGoogle Scholar
  186. 186.
    Zhao D, Wang T, Han D, Rusinek C, Steckl AJ, Heineman WR (2015) Electrospun carbon nanofiber modified electrodes for stripping voltammetry. Anal Chem 87:9315–9321CrossRefGoogle Scholar
  187. 187.
    Arkana E, Paimard G, Moradi K (2017) A novel electrochemical sensor based on electrospun TiO2 nanoparticles/carbon nanofibers for determination of Idarubicin in biological samples. J Electroanal Chem 801:480–487CrossRefGoogle Scholar
  188. 188.
    Rand E, Periyakaruppan A, Tanaka Z, Zhang DA, Marsh MP, Andrews RJ, Lee KH, Chen B, Meyyappan M, Koehne JE (2013) A carbon nanofiber based biosensor for simultaneous detection of dopamine and serotonin in the presence of ascorbic acid. Biosensors Bioelectronics 42:434–438CrossRefGoogle Scholar
  189. 189.
    Apetrei IM, Apetrei C (2017) Highly sensitive voltamperometric determination of pyritinol using carbon nanofiber/gold nanoparticle composite screen-printed carbon electrode. Int J Nanomedicine 12:5177–5188CrossRefGoogle Scholar
  190. 190.
    Mondal K, Ali MA, Singh C, Sumana G, Malhotra BD, Sharma A (2017) Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sens Actuat B 246:202–214CrossRefGoogle Scholar
  191. 191.
    Li Y, Zhai X, Liu X, Wang L, Liu H, Wang H (2016) Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode. Talanta 148:362–369CrossRefGoogle Scholar
  192. 192.
    Ya Y, Wang T, Xie L, Zhu J, Tang L, Ning D, Yan F (2015) Highly sensitive electrochemical sensor based on pyrrolidinium ionic liquid modified ordered mesoporous carbon paste electrode for determination of carbendazim. Anal Methods 7:1493–1498CrossRefGoogle Scholar
  193. 193.
    Tang L, Chen J, Zeng G, Zhu Y, Zhang Y, Zhou Y, Xie X, Yang G, Zhang S (2014) Ordered mesoporous carbon and thiolated polyaniline modified electrode for simultaneous determination of cadmium(II) and lead (II) by anodic stripping voltammetry. Electroanalysis 26:2283–2291CrossRefGoogle Scholar
  194. 194.
    Niu P, Sanchez CF, Gich M, Hernandez CN, Bolado PF, Roig A (2016) Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim Acta 183:617–623CrossRefGoogle Scholar
  195. 195.
    Kochana J, Wapiennik K, Knihnicki P, Pollap A, Janus P, Oszajca M, Kustrowski P (2016) Mesoporous carbon-containing voltammetric biosensor for determination of tyramine in food products. Anal Bioanal Chem 408:5199–5210CrossRefGoogle Scholar
  196. 196.
    Tanga L, Xiea X, Zhoua Y, Zenga G, Tanga J, Wua Y, Longa B, Penga B, Zhua J (2017) A reusable electrochemical biosensor for highly sensitive detection of mercury ions with an anionic intercalator supported on ordered mesoporous carbon/self-doped polyaniline nanofibers platform. Biochem Engineer J 117:7–14CrossRefGoogle Scholar
  197. 197.
    Milowska KZ (2015) Influence of carboxylation on structural and mechanical properties of carbon nanotubes: composite reinforcement and toxicity reduction perspectives. J Phys Chem C 119:26734–26746CrossRefGoogle Scholar
  198. 198.
    Ye JS, Liu X, Cui HF, Zhang WD, Sheu FS, Lim TM (2005) Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochem Commun 7:249–255CrossRefGoogle Scholar
  199. 199.
    Soldano C (2015) Hybrid metal-based carbon nanotubes: novel platform for multifunctional applications. Progress Mater Sci 69:183–212CrossRefGoogle Scholar
  200. 200.
    Zhou H, Zhang L, Zhang D, Chen S, Coxon PR, He X, Coto M, Kim HK, Xi K, Ding S A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors. Sci Rep.
  201. 201.
    Pei S, Cheng HM (2012) The reduction of graphene oxide. Carbon 50:3210–3228CrossRefGoogle Scholar
  202. 202.
    Thakur S, Karak N (2015) Alternative methods and nature-based reagents for the reduction of graphene oxide: a review. Carbon 94:224–242CrossRefGoogle Scholar
  203. 203.
    Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11.
  204. 204.
    Heister E, Lamprecht C, Neves V, Tılmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley HM, Silva SRP, McFadden J (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615–2626CrossRefGoogle Scholar
  205. 205.
    Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V (2010) A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: The contribution of physico-chemical characteristics. Nanotoxicology 4:207–246CrossRefGoogle Scholar
  206. 206.
    Lam CW, James JT, McCluskey R, Arepalli S, Hunter RL (2006) A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 36:189–217CrossRefGoogle Scholar
  207. 207.
    Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M (2016) Safe clinical use of carbon nanotubes as innovative biomaterials. Chem Rev 114:6040–6079CrossRefGoogle Scholar
  208. 208.
    Schrand AM, Huang H, Carlson C, Schlager JJ, Sawa EO, Hussain SM, Dai L (2007) Are diamond nanoparticles cytotoxic. J Phys Chem. B 111:2–7CrossRefGoogle Scholar
  209. 209.
    Yang J, Zhang Y, Kim DY (2016) Electrochemical sensing performance of nanodiamond-derived carbon nano-onions: Comparison with multiwalled carbon nanotubes, graphite nanoflakes, and glassy carbon. Carbon 98:74–82CrossRefGoogle Scholar
  210. 210.
    Liu Y, Kim DY (2014) Enhancement of capacitance by electrochemical oxidation of nanodiamond derived carbon nano-onions. Electrochim Acta 139:82–87CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ankita Sinha
    • 1
    • 2
  • Dhanjai
    • 2
    • 3
  • Rajeev Jain
    • 2
  • Huimin Zhao
    • 1
  • Priyanka Karolia
    • 2
  • Nimisha Jadon
    • 4
  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and TechnologyDalian University of TechnologyDalianPeople’s Republic of China
  2. 2.School of Studies in ChemistryJiwaji UniversityGwaliorIndia
  3. 3.CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  4. 4.School of Studies in Environmental ChemistryJiwaji UniversityGwaliorIndia

Personalised recommendations