Skip to main content
Log in

An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly(5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a label-free electrochemical immunosensor for α-fetoprotein (α-FP). It is based on the use of a glassy carbon electrode that was first modified with conducting poly(5-formylindole) and single-walled carbon nanotubes (P5FIn/SWNTs), and then coated with gold nanoparticles and the respective antibody. The presence of aldehyde groups warrants direct immobilization of the antibody and results in a convenient method for fabricating of the immunosensor. Gold nanoparticles (GNPs) were deposited on the P5FIn/SWNTs composite material, and the modified electrode was applied to the detection of α-FP. The analytical signal is obtained by measuring the change of amperometric response at a typical working voltage of 100 mV before and after the immunoreaction. The detection limit is 200 fg mL−1. The immunosensor is simple, sensitive, specific and reproducible. It has the potential for reliable point-of-care diagnosis of tumor or other diseases.

A simple electrochemical immunosensor based on conducting poly(5-formylindole) and single-walled carbon nanotubes composite was fabricated to detect alpha-fetoprotein. The detection limit is 200 fg mL−1. This immunosensor is simple, sensitive, specific and reproducible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Duffy M (2007) Role of tumor markers in patients with solid cancers: a critical review. Eur J Intern Med 18:175–184

    Article  CAS  Google Scholar 

  2. Chikkaveeraiah B, Bhirde A, Morgan N, Eden H, Chen X (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 8(6):6546–6561

    Article  Google Scholar 

  3. Lin J, Zhao Y, Wei Z, Wang W (2011) Chemiluminescence immunoassay based on dual signal amplification strategy of Au/mesoporous silica and multienzyme functionalized mesoporous silica. Mater Sci Eng B 176:1474–1478

    Article  CAS  Google Scholar 

  4. Cheng Y, Yuan R, Chai Y, Niu H, Cao Y, Liu H, Bai L, Yuan Y (2012) Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Anal Chim Acta 745:137–142

    Article  CAS  Google Scholar 

  5. Li H, He J, Li S, Turmer A (2013) Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15–3. Biosens Bioelectron 43:25–29

    Article  Google Scholar 

  6. Qiu J, Liang R, Wang R, Fan L, Chen Y, Xia X (2009) A label-free amperometric immunosensor based on biocompatible conductive redox chitosan-ferrocene/gold nanoparticles matrix. Biosens Bioelectron 25:852–857

    Article  CAS  Google Scholar 

  7. Nie G, Zhang Y, Guo Q, Zhang S (2009) Label-free DNA detection based on a novel nanostructured conducting poly(indole-6-carboxylic acid) films. Sensors Actuators B 139:592–597

    Article  CAS  Google Scholar 

  8. Souto D, Silva J, Martins H, Reis A, Luz R, Kubota L, Damos F (2013) Development of a label-free immunosensor based on surface plasmon resonance technique for the detection of anti-Leishmania infantum antibodies in canine serum. Biosens Bioelectron 46:22–29

    Article  CAS  Google Scholar 

  9. Ricciardi C, Castagna R, Ferrante I, Frascella F, Marasso S, Ricci A, Canavese G, Lore A, Prelle A, Gullino M, Spadaro D (2013) Development of a microcantilever-based immunosensing method for mycotoxin detection. Biosens Bioelectron 40:233–239

    Article  CAS  Google Scholar 

  10. Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A (2010) Electrochemical impedance spectroscopy of polypyrrole based electrochemical immunosensor. Bioelectrochemistry 79:11–16

    Article  CAS  Google Scholar 

  11. Loyprasert S, Thavarungkui P, Asawatreatanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78–86

    Article  CAS  Google Scholar 

  12. Liu G, Song D, Chen F (2013) Towards the fabrication of a label-free amperometric immunosensor using SWNTs for direct detection of paraoxon. Talanta 104:103–108

    Article  CAS  Google Scholar 

  13. Nie T, Xu J, Lu L, Zhang K, Bai L, Wen Y (2013) Electroactive species-doped poly (3,4-ethylenedioxythiophene) films:Enhanced sensitivity for electrochemical simultaneous determinationof vitamins B2, B6and C. Biosens Bioelectron 50:244–250

    Article  CAS  Google Scholar 

  14. Nie T, Leng J, Bai L, Lu L, Xu J, Zhang K (2014) Synthesis and characterizatio of benzenesulfonate derivativesdoped poly(3,4-ethylenedioxythiophene) films and their application in electrocatalysis. Synth Met 189:161–172

    Article  CAS  Google Scholar 

  15. Wen Y, Xu J, Li D, Liu M, Kong F, He H (2012) A novel electrochemical biosensing platform based on poly(3,4-ethylenedioxythiophene): poly (styrenesulfonate) composites. Synth Met 162:1308–1314

    Article  CAS  Google Scholar 

  16. Lu L, Zhang O, Xu J, Wen Y, Duan X, Yu H, Wu L, Nie T (2013) A facile one-step redox route for the synthesis of graphene/poly(3,4-ethylenedioxythiophene) nanocomposite and their applicationsin biosensing. Sensors Actuators B 181:567–574

    Article  CAS  Google Scholar 

  17. Yao Y, Zhang L, Duan X, Xu J, Zhou W, Wen Y (2014) Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes. Electrochim Acta 127:86–94

    Article  CAS  Google Scholar 

  18. Yu T, Cheng W, Li Q, Luo C, Yan L, Zhang D, Yin Y, Ding S, Ju H (2012) Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta 93:433–488

    Article  CAS  Google Scholar 

  19. Luo R, Zhang W, Cheng W, Zhao D, Li Y, Lin X, Dong F, Ding S (2013) A novel electrochemical immunosensor for detection of AngiotensinII at a glass carbon electrode modified by carbon nanotubes/chitosan film. Int J Electrochem Sci 8:3186–3196

    CAS  Google Scholar 

  20. Nie G, Bai Z, Chen J, Yu W (2012) Simple label-free femtomolar DNA detection based on a nanostructure composite material: MWNT-doped poly(indole-6-carboxylic acid). ACS Macro Lett 1:1304–1307

    Article  CAS  Google Scholar 

  21. Ambrosi A, Castaneda M, Killard A, Smyth M, Alegret S, Merkoci A (2007) Double-codified gold nanolabels for enhanced immunoanalysis. Anal Chem 79:5232–5240

    Article  CAS  Google Scholar 

  22. Yaseen M, Ali M, Najeebullah M, Munawar M, Khokhar I (2009) Microwave-assisted synthesis, metallation, and duff formylation of porphyrins. J Heterocycl Chem 46:251–255

    Article  CAS  Google Scholar 

  23. Maciejewska J, Pisarek K, Bartosiewicz I, Krysiński P, Jackowska K, Bieguński A (2011) Selective detection of dopamine on poly(indole-5-carboxylic acid)/tyrosinase electrode. Electrochim Acta 56:3700–3706

    Article  CAS  Google Scholar 

  24. Nie G, Bai Z, Yu W, Zhang L (2013) Electrochemiluminescence biosensor for Ramos cells based on a nanostructured conducting polymer composite material (PICA-MWNTs). J Polym Sci A Polym Chem 51:2385–2392

    Article  CAS  Google Scholar 

  25. Li N, Yuan R, Chai Y, Chen S, An H, Li W (2007) New antibody immobilization strategy based on gold nanoparticles and Azure I/multi-walled carbon nanotube composite membranes for an amperometric enzyme immunosensor. J Phys Chem C 111:8443–8450

    Article  CAS  Google Scholar 

  26. Saha K, Agasti S, Kim C, Li X, Rotello V (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  27. Huang M, Zhang J, Li X (2006) Characterizing parameters and the doping characteristic of elcetrochriomism of conducting polymer. Chem Res Appl 18:753–757

    CAS  Google Scholar 

  28. Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722

  29. Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard M, Liu J, Aksay I, Lin Y (2010) Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Anal Chem 82:2989–2995

    Article  CAS  Google Scholar 

  30. Huang K, Li J, Wu Y, Liu Y (2013) Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2-graphene composite based platform. Bioelectrochemistry 90:18–23

    Article  CAS  Google Scholar 

  31. Huang K, Niu D, Sun J, Zhu J (2011) An electrochemical amperometric immunobiosensor for label-free detection of α-fetoprotein based on amine-functionalized graphene and gold nanoparticles modified carbon ionic liquid electrode. J Electroanal Chem 656:72–77

    Article  CAS  Google Scholar 

  32. Wu Y, Xu W, Wang Y, Yuan Y, Yuan R (2013) Silver–graphene oxide nanocomposites as redox probes for electrochemical determination of α-fetoprotein. Electrochim Acta 88:135–140

    Article  CAS  Google Scholar 

  33. Li Y, Yuan R, Chai Y, Zhuo Y, Su H, Zhang Y (2014) Horseradish peroxidase-loaded nanospheres attached to hollow gold nanoparticles as signal enhancers in an ultrasensitive immunoassay for alpha-fetoprotein. Microchim Acta 181:679–685

    Article  CAS  Google Scholar 

  34. Lu Y, Huang X, Ren J (2013) Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout. Microchim Acta 180:635–642

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (51373089), National Natural Science Foundation of Shandong (No. ZR2011BM003), China Doctor Station Foundation of Higher Education (20123719120006), and Scientific and Technical Development Project of Qingdao (11–2–4–3–(10)–jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Li, C., Zhao, D. et al. An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly(5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Microchim Acta 181, 1601–1608 (2014). https://doi.org/10.1007/s00604-014-1313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1313-7

Keywords

Navigation